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Results of preliminary simulations of Autler-Townes effect in atomic and molecular 

level systems with hyperfine structure are presented. A system of three states with hyperfine 
structure in Na and Na2 coupled in a ladder linkage scheme by a weak probe field and a strong 
coupling field is studied by solving the density matrix equations of motion. The simulations 
show that application of a strong coupling field to systems with large hyperfine level splittings 
leads to a full resolution of MF Zeeman sublevels of the hyperfine levels F. This resolution 
improves as the coupling field Rabi frequency is increased to values much larger than the 
hyperfine level separations. In molecules, where hyperfine splittings are very small, the MF 
Zeeman sublevels can only be resolved at very small coupling field strengths and only if the HF 
splittings are larger than the natural widths of excited states and the laser linewidths. When the 
coupling field Rabi frequency exceeds the hyperfine level separations, the MF resolution is 
completely lost. This effect is interpreted in terms of the formation of dark states when a number 
of closely lying energy levels are coupled by a strong field to another energy level. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 2

I. Introduction. 

Recent advances in quantum optics have led to the discovery of many novel and 

intriguing phenomena such as electromagnetically induced transparency (EIT) [1], 

narrowing of spectral lines [2], and lasing without inversion (LWI) [3]. The underlying 

effect in all of them is the destructive quantum interference between different excitation 

pathways leading to reduction or full cancellation of transition probabilities. The first 

coherent interference experiment showing cancellation of absorption was performed by 

Fano [4] and subsequently led the idea of coherent population trapping (CPT) [5]. In a 

typical lambda scheme, a certain ratio of the applied field strengths leads to the creation 

of a ‘dark’ state.  

Taichenachev et al. [6] have obtained analytical expressions for dark resonance 

line shapes, where the full atomic structure, including magnetic and hyperfine levels, is 

included. Hioe and Carroll [7] investigated the behaviour of a multilevel quantum 

system interacting with a strong laser field and demonstrated the existence of different 

invariants (including CPT) depending on the number of levels N. Experimental 

observation of CPT in 87Rb vapor cell was reported by Zhu et al. [8], where multilevel 

dark states were created between two or three out of five degenerate magnetic sublevels 

in one of the ground state hyperfine levels. 

The above phenomena are related to the Autler-Townes (AT) effect [9]. While 

extensively studied in atoms [10], experiments in molecular systems are still relatively 

few [11]. The AT effect has a potential for new applications to molecular spectroscopy, 

like measurement of the transition dipole moments [11a-d] and lifetimes of highly 

excited molecular states using cw laser fields [11d], and all-optical alignment of  non-

polar molecules [11c].  
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McClean and Swain [12] discussed that the three-level resonant model of 

Feneuille and Schweinhofer [13] can not adequately describe the AT splitting 

experiment of Pique and Pinard [10a] in Na atoms. They investigated the effect of non-

resonant neighboring hyperfine levels as well as the role of magnetic sublevel 

degeneracy and concluded that both can significantly modify the population of the 

upper level, especially at high laser intensities.  

The present study is focused on effects of hyperfine structure on the AT effect. 

We consider ladder systems of hyperfine levels F in Na atoms and Na2 molecules (see 

Fig. 1), each of which is 2F+1-fold degenerate over the magnetic number MF. Of special 

concern is determination and interpretation of the conditions under which the hyperfine 

interaction becomes negligible. An intuitive assumption would be that the coupling of 

hyperfine components by the laser field depends on the hyperfine and magnetic 

quantum numbers, which would lead to a different AT splittings different MF 

components. The calculations show, however, that systems wit large and small 

hyperfine splittings actually respond differently to coupling by strong laser fields. 

 

II. Large HF splitting 

II.A. Excitation scheme in Na atoms 

Lagrge HF splittings are usually observed in low-lying energy levels of atoms. 

We consider a ladder scheme of three atomic states in Na, where each state has a well 

resolved hyperfine structure (Fig. 1a). A weak probe laser P excites the atoms from the 

ground state |g> (3S1/2, Fg =1, 2) to the intermediate state |e> (3P1/2 state, Fe =1, 2), 

which is further coupled by a strong laser field S to the final state |f> (5S1/2, Ff =1, 2). 

Unless specified otherwise, the laser linewidth is assumed to be 1MHz. Both laser fields 

are linearly polarised, which implies the selection rule ΔMF = 0 for laser-driven 
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transitions. The transition dipole matrix element between two MF magnetic sublevels of 

two hyperfine F states can be evaluated as [16] 
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where )( ef JJ μ  is the reduced matrix element, and () and {} brackets represent the 3j 

and 6j symbols, respectively. Since the Rabi frequency of the strong coupling field is 

proportional to (1), the F and MF dependence transfers to the splitting of the AT 

doublet. Therefore, we expect the excitation spectrum of levels |e> and |f> to consist of 

a number of AT split peaks, associated with each hyperfine and magnetic sublevel 

components. 

 

II.B. Theoretical model 

The optical Bloch equations (OBEs) for the density matrix are given by 

                                                [ ] ρρρ RHi
dt
d ˆ,ˆ +−=

h
,                                                     (2)                      

where the total Hamiltonian Ĥ of the atom-laser system includes the unperturbed atomic 

Hamiltonian as well as the dipole interaction operator EV
rr

⋅−= μ̂ˆ . The relaxation term 

R̂  accounts for relaxation due to spontaneous emission and transit relaxation of the 

molecules through the laser beam. Equation (2) results in a system of OBEs for Zeeman 

coherences
jijiji ffeegg ρρρ ,,  and optical coherences

jijijiji effegeeg ρρρρ ,,, . The solution of 

this system yields populations of levels |g>, |e>, and |f>. For a full description of the 

model see [17].  
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II.C. Numerical Results for Atoms 

We perform numerical simulations based on the OBEs model including the 

interaction of both laser fields with all the hyperfine levels in the system. Doppler 

broadening is not taken into account. Figure 2 shows the |f> state population as a 

function of probe field detuning for four different values of the coupling field Rabi 

frequency. At low intensity of the coupling field (Fig. 2a) the spectrum consists of two 

pairs of peaks which correspond to two-photon (one from the probe filed and one from 

the coupling field) excitation from the two ground state hyperfine levels to the two 

hyperfine components of level |f>. With the increase of the coupling field Rabi 

frequency, a separation of the Zeeman components MF is seen (Figs. 2b and 2c) until 

their full resolution at ΩS=2GHz (Fig. 2d). In the latter case the coupling field Rabi 

frequency exceeds the hyperfine splittings of both the 3P1/2 state (ΔE F=1,F=2=188.88 

MHz) and the 5S1/2  state (ΔE F=1,F=2=156 MHz) by more than ten times. The number of 

hyperfine components in the AT spectrum is in accordance with the number of possible 

couplings of MF sublevels in levels |g>, |e> and |f>, which are subject to the selection 

rule ΔMF = 0 and an additional restriction of the MF' =0 → MF = 0 transition if F' = F.  

It is instructive to see what would happen in the case of smaller HF splittings. 

For the sake of simplicity we shall consider only the transition Fg=1→|e>→|f>. Figure 3 

shows the variation of the excitation spectrum of level |f> at ΩS=2GHz as the hyperfine 

constant Ahfs of level |f> is reduced. The spectrum is initially splitted in two triplets at 

the original Ahfs = 78MHz (Fig. 3a). When Ahfs is reduced by a factor of two, the 

outermost components off each triplet remain at the same positions, while the middle 

ones are shifted towards the respective rhs outermost peaks (Fig. 3b). When Ahfs is 

reduced by a factor of 10, the middle peaks is shifted even more and cannot be resolved 

for the rhs peaks.  
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The above results are consistent with the reuslts obtained using a much simpler 

treatment of laser-atom system based on solving the Shrödinger’s equation, which yiled 

the time evolution of the probability amplitudes in the atomic wavefunction. 

Comparison with the simulations obtained by both approaches (Fig.4) shows the same 

energy positions of the MF Zeeman sublevels under the action of a strong laser field but 

different widths and intensities of the AT peaks, since no cascading due to spontaneous 

emission is included in Shrödinger’s equation.  

 

III. Small HF splitting 

III.A. Excitation Scheme in Molecules 

Small HF splittings of energy levels are characteristic to molecules. We consider 

a ladder of three rovibronic levels in Na with hyperfine structure (Fig. 1b), where state 

|g> is the X1Σ+
g (J=1) state, state |e> is the A1Σ+

u (J=0) state and 51Σ+
g (J=1) represents 

the final state |f>. The hyperfine splittings are of an order of 10-1÷102 kHz, which is well 

bellow the natural widths of levels |e> and |f>. 

 The nucleus of the sodium 23Na atom has a spin of 3/2, which leads to a total 

nuclear spin of I =3, 2, 1, or 0 for the sodium molecule. Since the atomic nucleus obeys 

the Fermi statistics, the total molecular wave function has to be anti-symmetric, e.g. 

symmetric rotational levels must have anti-symmetric nuclear spin functions, and vice 

versa. This leads to certain restrictions on the values of I for the chosen rotational levels. 

For the X1Σ+
g (J=1) and 51Σ+

g (J=1) states the possible values of the total nuclear spin 

and hyperfine number are I=0, F=2, 1, 0 or I=3, F=4, 3, 2. For the A1Σ+
u (J=0) state I=0, 

F=1 or I=3, F=3. Since ΔI=0 selection rule holds for transitions between hyperfine 

levels, we consider only excitations between levels with I=3 for simplicity. 
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III.B. Numerical Results for Molecules 

The final state population calculated with OBEs model as a function of the probe 

laser detuning for a value ΩS=500 MHz is given in Fig.5. Figures 5a-c show the full 

resolution of the magnetic sublevels MF when only one hyperfine level Ff =2, 3 or 4 in 

the final state is considered. However, the inclusion of more than one hyperfine level in 

the final state leads to a complete loss of the MF structure (Fig.5d); the states behave as 

J levels with MJ sublevels with no hyperfine structure.  

Similar results are obtained if narrow laser linewidths (1 Hz) and long lifetimes 

of excited states (τ = 100 μs) are used. If the Rabi frequencies are smaller than the HF 

splittings, then the HF structure is well resolved in the excitation spectrum of the upper 

level (Fig. 6a). If the Rabi frequency of the strong coupling field is increased, some of 

the HF components lose intensity (Fig. 6b), while at large intensities (Fig. 6c) the 

spectrum looks basically the same as in Fig. 5d. 

The latter is an interesting observation which contrasts with the behaviour of 

dressed levels in the case of large HF splittings. When the HF splitting is large, then 

increased Rabi frequency of the strong coupling field leads to a better resolution of the 

multitude of dressed states built of different HF levels. When the HF splitting is small, 

then increased Rabi frequency of the strong coupling field leads to a complete 

disappearance of the HF structure. 

 

IV. Creation of Multiple Dark States 

In order to understand the above effects, we applied the Shrödinger’s equation 

method for the model excitation scheme shown in Fig. 7, where the final state consists 

of six closely spaced levels separated by Δ = 100 KHz. As can be seen from Figs.8 a-d, 

the increase of the coupling field strength ΩS compared to values larger than the 
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separation Δ between the final states leads to a gradual decrease (Figs. 8a-c) and 

eventually vanishing (Fig. 8d) of the intensity of all AT peaks except the two outer 

ones. 

The above effect can be interpreted by examining the dressed-states approach. 

Consider the situation when a molecular quantum state 0ψ  is coupled with a system of 

quantum states nψ  by the laser field SE  as it is depicted on Fig 9a. The corresponding 

Rabi frequency 0n n SEψ ψΩ =  may have arbitrary values. Our aim is to find a set of 

dressed states. In the rotating wave approximation the coupling diagram can de depicted 

as in Fig. 9b. The total Hamiltonian 0
ˆ ˆ ˆ

SH H E= + of such a system has the form 

0
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,  (3) 

which is in the basis of the bare states iψ  ( 0,1,..,i n= ), 

0 0 0 00
( ) exp( / ) ( ) exp( / ) ( )S i ii
t i t i t C t i t C tψ ω ε ψ ε ψ

≠
= − − + −∑h h   (4) 

The Hamiltonian 0Ĥ  corresponds to a free molecule and determines the bare state 

energies 0/ ( / )i i Sε ω εΔ = − +h h  ( 0i ≠ ). The value 0Δ  for the low-lying state 0i =  is 

chosen as zero. The values of iΔ  correspond to the diagonal elements and given by laser 

detunings from resonance frequencies 0( ) /i Sε ε ω− −h  of the corresponding optical 

transitions. The Rabi frequencies nΩ  give nondiagonal matrix elements and are 

determined with the coupling term ˆ
SE  of the Hamiltonian Ĥ . 
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In order to diagonalize  the coupling part ˆ
SE , we shall first find all solutions 

( )
0

D
D i ii

Cψ ψ
≠

= ∑  of the equation 

                                                        0 0S DEψ ψ =                                  (5) 

Importantly, the wave function Dψ  does not contain 0ψ . Obviously, Dψ  is not 

involved in the laser-system interaction (see Fig. 9c); hence, it is a dark state. The 

coefficients ( )D
iC  obey a simple relation ( )

0
0D

i ii
C

≠
Ω =∑ . It is convenient to rewrite it 

as 

ˆ 0B DIψ ψ = ;  
02

0

1
B i ii

ii

ψ ψ
≠

≠

= Ω
Ω

∑
∑

,   (6) 

in which ψB and ψD are orthogional. Straightforward calculation yields 

2
0 0S B eff ii

Eψ ψ
≠

≡ Ω = Ω∑ .     (7) 

The function Bψ  is strongly coupled with the low-lying state with the effective Rabi 

frequency effΩ  and may be considered as an analogue of a bright state. 

Equation (6) implies that the subspace DΛ , which includes the dark states, is 

orthogonal to the one-dimensional subspace containing the single bright state. In other 

words, the dimension of DΛ  is n-1, i.e., there are n-1 dark states. The corresponding 

new diagram for the coupling matrix ˆ
SE  is depicted in Fig. 8c. If the interaction is 

strong, i.e., if the separation between the bare state energies are negligible compared to 

the effective Rabi frequency 

)...,,1( niieff =Δ>>Ω ,    (8) 
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then the subspace DΛ  is not excited by the laser field. Only the bright state is involved 

in the interaction with the low-lying states, which results in the formation of two 

dressed states ,+ −  with energies ε± : 

Ĥ ε±± = ± ;  2 21
2 B B effε±

⎡ ⎤= Δ ± Δ + Ω⎣ ⎦ ;  2 2
0 0 0

ˆ /B B B i i ii i
Hψ ψ

≠ ≠
Δ = = Ω Δ Ω∑ ∑ . 

In experiment, the situation depicted on Fig. 8c corresponds to the excitation of only 

two levels ε± , i.e., only one doublet would appear in the excitation spectrum.

 

V. Conclusion 

The simulations of Autler-Townes spectra for molecules with small hyperfine 

splittings of energy levels show that when a strong coupling field is used, the hyperfine 

structure cannot be resolved regardless if the splittings are smaller (Fig. 5d) or larger 

(Fig. 6c) than the natural widths of excited levels. The dressed state analysis leads to a 

conclusion that resolution of MF Zeeman sublevels is not possible because of the 

formation of multiple dark states in a multilevel system coupled by laser field with Rabi 

frequency much larger than the level separation. It is, however, not yet quite clear why 

the MF resolution is not lost in the atomic hyperfine level system, when the coupling 

Rabi frequency is much larger than the HF level separations (Fig2d). Further 

investigation of AT effect in level systems with hyperfine structure are in progress and 

will be reported elsewhere. 

 

This work was funded by the EU FP6 TOK project LAMOL, Latvian Science 

Council, and UL project Y2-ZP-114-100. I.I.R. acknowledges support from RFBR grant 

No. 08-02-00220.  
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Figure Captions  

 

Fig. 1: Excitation schemes in Na (frame (a)) and Na2 (frame (b)). 

 

Fig. 2: Population of level |f> vs probe field detuning for different S field Rabi 

frequencies. Simulations are performed using parameters Ωp=1 MHz, transit relaxation 

of 1 MHz, laser linewidth of 1 MHz for both laser fields, and lifetimes of the 3P1/2 and 

5S1/2 states of 16.35 ns and 77.6 ns, respectively. 

 

Fig. 3: The Fg=1→|e>→|f> component of the excitation spectrum in Fig. 2d for 

different values of Ahfs. Other simulation parameters are equal to those used in Fig. 2.  

 

Fig. 4: Comparison of AT spectra obtained by the solution of OBEs and Schreodinger's 

equation. Simulation parameters are equal to those used for Fig. 2d. 

 

Fig. 5: Population of level |f> vs probe field detuning calculated for each hyperfine 

component separately (frames (a), (b), and (c)) and for all components simultaneously 

(frame (d)). The simulations were performed with ΩS=500 MHz, Ωp=1 MHz, transit 

relaxation of 10 kHz, linewidths of both laser fields of 10 kHz, and lifetimes of the 

A1Σ+
u and 51Σ+

g states of 12.45 ns and 40 ns, respectively.  

 

Fig. 6: (a), (b), (c) Write text for spectrum for molecules with long lifetimes and narrow 

laser linewidhs. 
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Fig. 7. Model system for state |f> consisting of six closely spaced levels |1>, …, |6> 

separated by Δ = 100 KHz and coupled by a strong laser filed ES to level |e>, while 

levels |g> and |e> are coupled by a weak probe field EP. 

 

Fig. 8: Population of level |f> vs probe field detuning for different Rabi frequencies of 

coupling field: (a) ΩS = 50KHz; (b) ΩS = 100KHz; (c) ΩS = 200KHz; (d) ΩS = 400KHz. 

The simulations were performed with Ωp = 1kHz, Δ=100kHz, and the decay rates of 

levels |e> and |f> of 10 kHz. 

 

Fig. 9: (a) Coupling scheme of bare states. (b) Coupling diagram in the rotating wave 

approximation; (c)  the coupling diagram can de depicted as in Fig. 9b. 

 (c) Coupling of the lower state 0ψ  and the bright state Bψ  to the dressed states |−> 

and |+>; dark states Dψ  from subspace DΛ  are not involved in coupling. 
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Fig. 3.  
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Fig. 4.  
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