
ar
X

iv
:q

ua
nt

-p
h/

99
05

01
6 

  6
 M

ay
 1

99
9

A simple formula for ground state energy of a two-electron atom
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A simple expression for a ground state energy for a two-electron atom is derived. For this
assumption based upon the Niels Bohr ”old” quantum mechanics idea about electron correlation
in a two-electron atom is exploited. Results are compared with experimental data and theoretical
results based on a variation approach.

I. INTRODUCTION

The helium problem played an important role in the early history of quantum mechanics [1]. Already at the very
beginning of ”old” quantum theory Niels Bohr made his first attempt to calculate energy levels of the He atom. He
discussed a model when both electrons of a two-electron atom move along the same circular orbit and are located at
the opposite ends of a diameter [2]. Even some time before Bohr’s attempt Hantaro Nagaoka in Japan demonstrated
from the view point of classical mechanics that such motion possesses the lowest possible energy and – what is very
important – it is a mechanically stable arrangement [3]. It means that weak disturbances cannot destroy this motion.

Afterwards Bohr’s approach to the problem was considered to be unsuccessful mainly due to the reason that this
model fails to the explain diamagnetism of a two-electron atom in its lowest energy state and also the value of the
obtained energy was in a rather poor agreement with experiment. Later it was assumed that only quantum mechanics
can satisfactorily explain such a two-electron atom.

In this paper we will try to demonstrate, that if we combine quantum mechanical approach to the two-electron
atom with ideas that were at the heart of Bohr’s approach, we can obtain a very simple expression for the lowest
energy level of a two-electron atom that can nevertheless describe these energies with the same accuracy as do more
complicated approaches based on the quantum variation method combined with a quantum perturbation theory.

II. SCHROEDINGER EQUATION FOR A TWO-ELECTRON ATOM WITH STRONG ELECTRON
CORRELATION

Let us consider a two-electron atom with a nuclear charge Z. In atomic units the stationary Schroedinger equation
for this system is (

−1
2

∆1 −
1
2

∆2 −
Z

r1
− Z

r2
+

1
r12

)
ψ = Eψ. (2.1)

It is well known that to solve this equation, it is important to account correctly for electron correlation. Now let
us assume, as it was done by Niels Bohr, that electrons are permanently located exactly on the opposite sides of
nucleus, so that r1 = −ar2 (a being positive). In opposition to the general case of the Schroedinger equation for a
two-electron atom, with this last assumption, equation (2.1) can be solved precisely analytically. For eigenvalues the
solution is

En (a, Z) = − (1 + a)2

2n2(1 + a2)

(
Z − a

(1 + a)2

)2

, (2.2)

where n is a principal quantum number. This solution is not quantized in a strict sense. The energy of the atomic
state depends on the particular value of the parameter a which can vary continuously. It is reasonable to look for
those a values for which energy approaches its lowest value at a fixed nuclear charge Z and quantum number n. This
analysis leads us to the value for a = 1 and we immediately arrive at the solution obtained by Niels Bohr in the ”old”
quantum theory, namely E1(1, 1) = −9/16 = − 0. 5625 a.u. for the H negative ion and E1(1, 2) = −49/16 = −3. 0625
a.u. for He. These numerical results predict much lower ground state energies for these two-electron atoms, than it is
experimentally observed, see Table 1. For this a simple qualitative explanation can be found. Above, we considered
a case when a exactly equals 1 – or, in otherwords – electrons are constantly and exactly on the opposite ends of a
diameter of a circular orbit. Obviously for the low lying states of atoms this assumption contradicts the uncertainty
principle. If we take uncertainty relations into account it means that we can not say that we can permanently know

1



the exact location of one electron with respect to another one. As a result one can not assure that both electrons
occupy all the time this most favourable from the view-point of energy spatial configuration and, as a result, the
actual anergy level is raised in comparison with this most favourable classical state.

III. GROUND STATE ENERGY LEVELS OF A TWO-ELECTRON ATOM – SIMPLE EXPRESSION

For a single electron atom the general solution of the Schroedinger equation is E(s)
n (Z) = Z2/

(
2n2
)

we can express
ionization energy for the two-electron atom in our model as

I (a, Z) = − (1 + a)2

2(1 + a2)

(
Z − a

(1 + a)2

)2

− Z2

2
. (3.1)

Now in the framework of this model we can analyze what is the smallest nuclear charge Z0 for which stabile two
electron negative ion will still exist. Moreover, for this numerical exercise, let us now let Z vary continuously and let
us analyze the most favourable – with lowest energy – configuration when a = 1. The threshold value of Z at which
ionization energy I (a, Z) approaches zero and consequently one electron can be ejected form the atom, which means
that the Helium-like ion ceases to exist is

Z0 =
1
2

+

√
1
8
≈ 0.85355. (3.2)

It can be interpreted in a sense that at Z = Z0 only those hypothetical negative ions for which both electrons are all
the time exactly on the opposite ends of the diameter of a circular orbit (a ≡ 1) can survive. This means that in this
limit of small Z values the expression

E1 (a = 1, Z ∝ 1) = − (Z − 1/4)2 (3.3)

can be a good approximation for the energy levels for this very fragile hypothetical Helium like ion. We realize very
well that the last analysis is only a numerical exercise performed with Eq. (3.1) and in a real world there do not exist
ions with fractional nuclear charge Z, but, on the other hand, we will show further, that the obtained ground state
energy expression (3.3) can be successfully used as asymptotic approximation for ions with small integer Z values.

Probably, such a hypothetical ion with Z0 ≈ 0.85355 if it existed could not survive for very long before autoionizaton,
because, as it was mentioned above, the assumption about permanent location of the electrons at opposite ends of
the diameter contradicts the uncertainty principle.

On the other hand it is known that the variational principle with only one variational parameter – the effective
nuclear charge – can lead to the expression for energy in the form [4]

E
(v)
1 (Z) = −

(
Z − 5

16

)2

. (3.4)

This formula is known to give rather good agreement with experiment at the opposite limit when Z � 1. This fact,
namely that formula (3.4) is good at the limit of large Z values, can be easily understood.

The classical text book problem is to calculate the energy states of a two-electron atom by means of perturbation
theory. At the very beginning one can easily solve the problem neglecting electron – electron interaction (problem
of independent electrons) and than one can consider electron – electron interaction as a perturbation. Obviously,
this approach will not be very good for small Z values, when nucleus – electron interaction and electron – electron
interaction is of the same magnitude. But if Z is getting larger and larger, approximation is getting better and better,
since nucleus – electron interaction is getting strictly predominant. In the first order the perturbation theory gives
for energy [4]

E
(p)
1 (Z >> 1) = −Z2 +

5
8
Z (3.5)

which in a large Z limit coincides exactly with (3.4).
Let us now combine the expression for small Z values – Eq. (3.3) and that for large Z values – Eq. (3.4) into one.

Such an expression can be constructed in a rather simple form

E1 (a, Z) = −
(
Z −

1 + 1
4

√
1− Z0/Z

4

)2

. (3.6)
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The energies given by this expression can be compared with ground state energies obtained for a two-electron atom
with nuclear charge Z. The first method for calculating these energies was worked out by Hylleraas [5]. The method
was based on a variation approach combined with perturbation theory. If function with 50 summands was used as a
probe function Hylleraas obtained after laborious calculations ground state energy dependence on Z for a two-electron
atom in the form [6]

E
(H)
1 (Z) = −Z2 +

5
8
Z − 0.157652 +O

(
1
Z

)
. (3.7)

Finally, the quality of both Z energy dependences must be compared with experimental results for two electron
atoms. The best experimental values for these energies for wide range of ions can be found in the National Institute
of Standards data base [7].

IV. DISCUSSION

Today advanced numerical calculations of two electron atoms are available. For the classical example of the ground
state of a helium atom the nonrelativistic energy of the ground state is obtained with an accuracy of one part in 1019.
For this a basis set containing 2114 terms was used, see [8] and references therein.

Despite these spectacular achievements it is still interesting, in our opinion, to analyze a simple and easy under-
standable approach to helium-like atoms. The experimental values of ground state energies for He-like atoms, together
with energies given by expressions Eq. (3.6) and (3.7) are collected in Table 1. In the third column of this table
experimental values of ground state energies of He-type atoms are given. The fourth column contains the energies
for the same ions calculated from Eq. (3.6), as derived in this work. The fifth column of Table 1 contains energy
values calculated from the Hylleraas expression (3.7) obtained by means of a variational approach combined with the
perturbation theory. Energies from both expressions agree relatively well with each other for all Z values, and with
experimental data for small Z. For larger Z formulae yield larger energies (less negative) than those measured in
experiment. This difference is due to relativistic and QED corrections that are not included in these formulas. During
the years relativistic and QED corrections have been measured and calculated many times with increasing accuracy,
see for example [9]. Nevertheless, for our purpose, when we do not expect spectroscopic accuracy for the simple
formulae under discussion, an estimate of these effects can be used to account for them. For an arbitrary two-electron
atom the relativistic correction to the ground state energy can be calculated as [4]

Erel = −1
8
α2Z2(Z2 − 3.606Z + 3.29 + 0.05Z−1) (4.1)

In a similar way the QED correction for ground state energy can be found as [4]

EQED =
16Z4α3

6π
[
(3.745− lnZ) − Z−1 (5.97− 1.31 lnZ) +

Z−2 (3.08− 0.28 lnZ)
]

(4.2)

These corrections must be added to the ground state energy values obtained from expressions Eq. (3.6) and Eq. (3.7).
If we now compare the corrected ground state energies obtained with experimental values, agreement is very good. In
Figure 1 the relative differences (Ee −Et)/Ee between theoretical energy Et calculated from the respective formulae
(3.6) or (3.7), together with corrections (4.1) and (4.2), and experimental energy Ee are presented. We can see that
in most cases the relative difference is less and in most cases significantly less than 0.1%. An exception is the energy
from the Hylleraas formula for the negative H ion. These discrepancies can not be, at least not significantly, reduced
if we take into consideration the finite mass of the nucleus. An account for this can lead to the relative increase of
the ground state energy in comparison of the value obtained from (3.7) for about m/M where m is a mass of the
electron, but M is the mass of the nucleus [4]. Apart from this simple effect of the finite mass of the nucleus upon
the energy levels of the ion, there exist secondary – usually smaller – effects connected with correlation in electron
motion [4]. Nevertheless, it is known that correlation effects in electron motion for a two-electron atom in quantum
mechanics are insignificantly small for ground state S energy levels, and this correction for ground state energy can
be neglected.

Account for finite nucleus mass in Bohr’s model when both electrons are constantly located at the opposite ends of
a diameter of a circular orbit can differ from usual conclusions about the atomic S state. In this model the motion
of both electrons is obviously strongly correlated. It must strongly decrease the influence of nuclear motion upon the
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calculated ground state energy, if not cancel it totally. In the case, when both electrons are all the time on a circular
orbit on opposite ends of a diameter, the nucleus will remain at rest all the time in laboratory coordinates.

In the overall, approximation given by Eq. (3.6), which was obtained practically without any adjustable parameters
agrees with experiment better than the Hylleraas formula. Maybe this can be considered only as a curios coincidence,
but we think that this expression for ground state energy of a two-electron atom may be of some interest. As a
starting point for the derivation of the energy for a He-like atom ground state the approach of old Bohr’s quantum
mechanics was used. This approach in some textbooks still is viable for achieving intuitive understanding of a theory
of atomic structure.

One may ask why the square root
√

1− Z0/Z was chosen in formula (3.6). Any other power of p in the expression
(1− Z0/Z)p would give the same asymptotic behaviour of the energy for small as well as for large Z values. The
actual power p = 1/2 was chosen on the ground of the best coincidence with experimental results, combined with
the willingness to obtain a simple final expression. Actually, the best coincidence with experimental results can be
obtained at p value slightly larger than 1/2 (around 0.56). One must realize, that an exact value of a parameter p, at
which the best coincidence between experiment and expression (3.6) can be obtained, varies slightly for different Z
values. Nevertheless, it is surprising how close it remains to 0.56 in a broad range of Z values. Taking into account
all this and the obvious circumstance, that one can not expect very high accuracy from such a simple expression as
(3.6) which is not based on very sound assumptions, and trying to derive a simple expression we have chosen p = 1/2
in a final expression.
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TABLE CAPTION

Table 1. Experimental values of the ground state energies for a He-like atoms [7], the energies obtained from Eq.
(3.6) and Eq. (3.7) together with the relativistic and QED corrections to these energies. Energy is given in atomic
units.

FIGURE CAPTION

Figure 1. The relative differences between the corrected ground state energies for a He-type atoms calculated from
Eq. (3.6) (squares) and Eq. (3.7) (circles) and experimental values for these energies.
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