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The possibilities of using a single atom in a quantum superpositional state
of an angular momentum as a quantum interferometer are demonstrated. A
feasible realization of experiments with an atom similar to those performed with
single- and double-particle interferometers on photons in order to test the
foundations of quantum mechanics is discussed. The changes in the visibility of
interference patterns in accordance with the information once made available
about the atomic state are analyzed. The possibility of quantum "eraser" type
experiments with atoms, earlier realized with photons and neutrons, is discussed.

The analysis of advantages and disadvantages of the use of an atom as
quantum interferometer in comparison with single- and double-particle inter-
ferometers with photons is presented. The difference between a single particle
superpositional state with components separated in linear coordinates and in
angular momentum coordinates is briefly touched upon.
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1. INTRODUCTION

The particle analog of Thomas Young's classic double-slit interference experi-
ment still plays a very important role in contemporary physics. A practical realization
of such an interferometer with electrons and protons is hampered by their strong
electromagnetic interaction with the environment, but neutron interferometers
operate in many laboratories [1]. In the last decade, Young’s optical experiment was
directly repeated with neutrons using a mechanical double slit of dimensions of 20 xm

and neutrons with the de Broglie wave length Ap=15+30 A 2]

Despite the fact that the interference of the de Broglie waves of neutral
atoms and even of small molecules was demonstrated by Otto Stern as early as
in 1929 {3}, atom interferometers — challenged due to a small de Broglie wave
length (typically 1 A for thermal atomic beams)—became a powerful tool to measure
the acceleration resulting from gravitation, rotations, and the photon recoil of an
atom {4, 5] only very recently .

A special type of particle interferometers — single particle interferometers —
attracts especially the attention of those who try to check the foundations of quantum
mechanics. These are interferometers with only one particle passing through the
device at a time. Such interferometers and their close counterparts — two-particle
interferometers — made it possible in the past years 10 demonstrate that the Bell
inequality [6] is violated (in accordance with the laws of quantum mechanics) in the
correlation measurements between spin states of protons [7], the states of photon
polarization (8, 9], and the phase and momentum of photons [10]. All these experi-
ments helped to examine the nonlocality of quantum mechanics.
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These one- and two-particle interferometers allowed measurements of the
tunneling time of a photon [11]. Non-interactive measurements were also demonstrated
to be possible in quantum mechanics [12). By these devices the changes in the visibility
of the interference pattern in accordance with the information available about the
state of particles in the interferometer were demonstrated [13). Experiments showing
the possibility to "erase” information once made available about the state of a photon
were also performed [14]. In the heart of quantum interference experiments there lay
one-particle and two-particle superposition states. )

So far, all but a few [2, 7] technically very complicated experiments intended
to check the foundations of quantum mechanics and the one-particle superposition
principle were performed on photons. ' :

In this paper, it is demonstrated that there exists another possibility to carry
out such experiments in a very simple way by using a single atom as quantum inter-
ferometer allowing us to realize the one-particle superposition state.

In this paper, it is also tried to bring together ideas about tests of foundations
of quantum mechanics and the experience of atomic physicists who have been
investigating the effect of the interference of atomic states during the last 30 years
[15]. To make it easy to understand the main ideas, a very simple model is used.
However, this simple model of a two-level atom with zero total electron spin — with
slow decay and without hyperfine structure — allows us to demonstrate all the
advantages that atomic physics experiments can provide to analyze the foundations
of quantum mechanics. _

It seems that those experimental possibilities atomic physics can offer to tackle
long lasting quantum mechanijcal puzzles are not yet fully understood and exploited,
although the interference of atomic states is successfully used to solve specific
problems of atomic and molecular physics [15, 16}

II, ANALOGY BETWEEN MACH-ZEHNDER TYPE PARTICLE
INTERFEROMETER AND INTERFERENCE OF ATOMIC STATES

A. SINGLE ATOM INTERFERENCE

In the first proposal of the experimental realization of a quantum mechanical
interaction-free measurement, the Mach-Zehnder type particle interferometer as a
device to make such measurements possible was analyzed [17]. One of the key points
for the use of this interferometer for tests of the foundations of quantum mechanics
is that when a single photon hits the first beam splitter BS1 (see Fig. 1a) its wave
function can be written as [17] -

\photony =2 2|1 +i27%|2), 6N

where |1) represents the state of the photon transmitted through the beam splitter,
but |2) a state of the reflected photon. Of course, for a more detailed description
of a photon one needs all the power of the mathematical apparatus of quantum
optics, but even this simplified form (1) allows us to demonstrate the key moments
of the problem. A very good analysis of quantum optics approaches to a description
of one- and two-photon interferometers was given in a recent review [18]. There
was also shown that the phenomenological description of the Mach-Zehnder inter-
ferometer is identical to that of the Michelson interferometer. It means that a
single atom interferometer can be compared with the Michelson interferometer
equally well.
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D? LJ Fig. 1. Mach-Zehnder interferometer
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As a result of the action of a beam splitter, the photon appears in a one-particle
superposition state consisting of two partial components |1) and |2). For a half

n‘aﬁsparent beam splitter the respective amplitudes of the components are 27" From,
the law of conservation of energy it follows immediately that the transformation
matrix that characterizes the beam splitter must be unitary, and, consequently, the
relative phase of the reflected and the transmitted beams is exp (in/2) = i

A very similar one-particle superposition state can be achieved when an atom
absorbs light of an appropriate polarization. Let us consider an atom with a ground
state possessing an angular momentum represented by a quantum number jg=0and
an excited state with an angular momentum represented by a quantum number
Jje.= 1. The ground state consists of one magnetic sublevel with the magnetic quantum
-number mj, = 0, and the excited state of three magnetic sublevels m;, = -1,0, +1, see
Fig. 2a.

Suppose that such an atom absorbs the linearly polarized light in a geometry
as shown in Fig. 2b. The unit vector along the direction of the polarization E, of the
exciting light can be represented by the following components E{ in a cyclic system
of coordinates [16]

Fig. 2. Atom as a quantum
.interferometer;

a — energy level scheme,

b — geometry of excitation
and observation
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After absorption of light with the given polarization, the atom in an excited
state will appear in a single particle superposition state

latom)=73 c,, lm )exp(—ze RO

m. e
J)

-1/2
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where the amplitude of the partial components |-1), and |+1), of the total wave
function can be calculated according to {16] as
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where d is an operator of the transition dipole moment, Cj:,’{'g; 1¢ — the Clebsch-

Gordan coefficient [19] — and, finally, (| |d) lig) is a reduced matrix element
independent of mj, and m;. It plays no role in further discussions and is omitted

for the sake of shortness of notations, as well as a factor (2j. + 1)'1/ 2in (3) and
further on. The partial wave functions in this case are angular momentum states
representing different angular momentum spatial orientation with respect to the
quantization axis z.

From Egq. (3), we see that the state of an atom after the absorption. consists
of two components, namely | -1), and | +1), in the same way as the state of a photon
in the Mach-Zehnder interferometer after the first beam splitter. The amplitudes of

both components of the wave function are again equal to 2712, and their relative
phase depends on the phase factors —i exp (—ie m, t/R). This relative phase can be
a time-dependent quantity if energies of magnetic sublevels are not equal, ie,

e —1 # € +1 . The latter situation can be exploited in interference experiments, as will
be demonstrated later.

~ To observe the interference of two coherem partial states of a particle in a
Mach-Zehnder type interferometer, mirrors M1 and M2 are used (see Fig. 1a) to
join two possible trajectories of the photon in one point on the second beam splitter
BS2. If both passes of the photon to the second beam splitter BS2 are of equal optical
path length, the partial waves on the detector D1 will arrive in phase (one reflection
in a beam splitter for each wave), the constructive interference will happen, and the
detector will click with certainty. On the contrary, partial waves will be with opposite
phases on the detector D2 (two reflections in a beam splitter for the first and no
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reflections for the second wave), the destructive interference will happen and the
detector will have zero probability to detect the photon.

How can the interference of partial wave functions be observed in the case of
one atom? For this, we must detect light with a detector sensitive to a certain
polarization, when after the absorption the atom decays to the initial ground state.
If in the detection we choose the linear polarization of the analyzer with direction
of polarization Eg4 parallel to the Ee-vector of excitation, we have the following
cyclic components of Eg4 :

Efl =72
Eq =0, ©)
E;i-ll = i2—1/2.

As far as E,Ill and EI} have equal phases and if the energies of both atomic

sublevels e _1 and e 41 are equal (which is always the case if no external fields

are applied), this means that both partial states of the atom are in phase when
their interference is detected and we can expect constructive interference. The pro-
bability to detect a fluorescence with such polarization is maximal. This orientation
of the analyzer in a detector corresponds to the detector D1 in the Mach-Zehnder
interferometer.

On the contrary, if we set the vector Eg of the analyzer in the detector
perpendicular to the vector of excitation, then E4 will have the components:

El =2
E}, =0, (6)

Ej=2""2

We see that E{izl and E}'zl have opposite phases and we can expect a destruc- .
tive interference of partial atomic wave functions and zero probability to detect
fluorescence in this detector. This polarization of the observation corresponds to the
detector D2 in Mach~Zehnder interferometer. :

To make sure that this qualitative analysis is correct, let us perform an exact
calculation of the probability to detect fluorescence emitted by an atom for arbitrary
orientation of the analyzer in the detector. For this, a semiclassical approach will be
used. This means that we consider the atom in a quantum manner and the light in a
classical way. It is assumed in this approach that the probability to detect the photon
emitted by the atom is proportional to the square of the light field averaged over the
detection volume. For this description, we use the quantum mechanics density matrix
fmm' [20), which, in a most natural way, accounts for amplitudes and relative phases
of all partial components of the wave function of an atom. In our case, the density
matrix of an excited state of an atom can be expressed as [16]

fm. m'.' = rp (m]“E: d/]m]‘) (m]JEcd/]m]l) -

12 e
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where T is an absorption probability. Knowledge of the density matrix of the
excited state of an atom allows us to calculate the probability to emit light of a
definite polarization Eg4. In our example it is [16]

* * AN fa® .y

et ™ 12
RUAIT AT
. @F D

4.+ q, o= In* =9 m. 'm‘ '
x5 (-Df" B ESY By Crlesg, G nlera o, m: @

i‘
8
- m 4,4,
(4

If we calculate this probability P as dependent on the angle £, see Fig. 2b,
between E, and Eg4, we obtain

1
P=5(1+ cos 2§), ©
which is in full agreement with our qualitative analysis performed above.

B. MEASUREMENTS WITH A SINGLE ATOM INTERFEROMETER

Despite the fact that a possibility to examine experimentally the interference
of an atomic state is interesting in itself, to make use of an interferometer we need
a possibility to alter the channels. In the Mach-Zehnder interferometer it can be
done by introducing the phase shift by changing the optical path length of the
channels, or changing the amplitude of one of the partial components of the wave
function by altering the channels’ transparency with some additional elements. In
doing so we make these channels unequivalent. Can it also be done in the case of an
atom? Of course, it can be done, but not in the same way as in the case of the
Mach-Zehnder interferometer, although either phase or amplitude of the partial wave
functions of an atom can be altered.

Let us consider an atom in an external magnetic field that is directed along
the z-axis, see Fig. 2b. This field locally breaks the anisotropy of the space by setting
a singled-out direction. It means that angular momentum states differing in spatial
orientation will no longer be equivalent. In this field, atomic sublevels will gain
additional energy in accordance with the well-known Zeeman effect formula. If we
consider an atom with the total spin moment S=0, we have
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€ m, = pgHm, | (10)
where H is the magnetic field strength, 4up — Bohr magneton. As a result, in
the magnetic field, phase difference between partial components of the wave function
(3) will be changing in time. Obviously, we can also expect the probability to
detect light from such an atom with either of detectors to be changing in time.
The results of exact calculations according to (7) and (8) yield

= %{1 + cos (wt — 2£)), (11)

where w=(¢ +1 — ¢ ~1)f = 2up H/R . This formula shows that if we are absolutely

unaware from which state — |+1), or |-1), — the atom radiates (i.e., which
pass it takes from the ground state to the excited state and back), we will have
the 100% modulation depth of the probability to detect fluorescence.

1. Visibility of an interference pattern

Can this modulation depth be changed if we obtain information about the
substate from which the atom decays? The answer is yes. The difference of two
possible decay channels |+1), -»|0)g and |—1).-»|0); is that in the first case the
atom in the positive direction of the z-axis radiates lefthand circular polarized light,
while in the second case righthand circular polarized one [16]. All we need to
determine from which substate the atom decays is to detect the circularity of the
emitted light. Let us assume that the analyzer in front of our detector filters the
righthand polarized light with probability |a%1|? and the lefthand polarized light with
probability |a‘§.1|2. From an experimental viewpoint, this means that the detector is
sensitive to the light with a certain ellipticity. Such a detector can easily be realized
by means of a quarter wave plate with a subsequent appropriately oriented linear
polarizer [21}. Assuming the normalization Ia‘illz + ]ai‘le =1, the cyclic com-
ponents of Eg can be written as {16]

glogf

a =08-1»
0

Ed =0, 12)
+1 d.

Ed = a+1-

For simplicity and without losing the generality of the obtained results, we can

assume that af are real numbers [16]. Then, according to our procedure, the pro-
bability to detect fluorescence from an atom in a magnetic field can be calculated as

P=1(1+2%,a% cosar). (13)

It means that we can predict the 100% modulation depth or the 100% visibility of
interference if our detector transmits lefthand and righthand circular polarized light
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with equal probability, and zero visibility or modulation depth if we detect a definite
circularly polarized light with a certainty, ie, |a%1)>=1 and [a%;]?=0 or
1a%1)*=0 and ]a‘iﬂz = 1. In the intermediate cases, the modulation depth or
the visibility of interference must vary according to the extent the information
about the decay channel can be obtained with our detector. A similar experiment
was carried out with photons, demonstrating in a two-particle interferometer how
the information obtained about the path of particles changes the visibility in an
interference pattern in accordance with quantum mechanical predictions {13, 22].

In a similar way as by means of an analyzer we can set a detector such that
every time the detector clicks we know that with probability ]a‘.’..l |2 a lefthand circular
polarized light is emitted, and with probability 1 — la‘.’,.ll2 a righthand polarized
light is emitted; we can choose the polarization of excitation such that we know that
with probability IaEH]z an atom is excited to the substate |+1). , and with
probability 1 — Ja%1]|2 to the substate |—1) . The same as for the detection, this

will decrease the visibility of an interference pattern in relation to the available
information about the substate being excited.

2. Quantum "eraser” experiment with an atom

Combining the appropriately organized excitation of an atom by elliptically
polarized light with the observation by means of a detector sensitive to elliptically
polarized light of different ellipticity, one can check another effect known from
experiments with photons [14] and neutrons [23], namely, the possibility to "erase”
information once made available about quantum states.

Let us assume there is an excitation with elliptically polarized light, such that

E, =a_,,
0

E, =0, 14)
+1

Ee =a,1,

where af are chosen to be real gain. The created excited state of the atom in this
case will be characterized by a wave function

Jatom) = a°_ | exp (—ie _{t/B)| -1), + a’,, exp (—ie , 1/B)| +1), (15)

and the visibility of the interference pattern at the linearly polarized observation
can be determined from the probability to detect linear polarized light

P= 111424° ", cos(at — 28)). (16)

If we know which atomic subleve] is preferably excited (i.e., a% #a%; ), then
the visibility of the interference pattern will be decreased.

However, this visibility can be restored if we choose the polarization of an
analyzer in front of the detector opposite to the polarization of the excitation such
that the information once made available in the process of excitation will be lost
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afterwards, or, more precisely, will not be used in the process of detection. It means
we must set

-1 d +1 e
Ed =a—1=Ee =a+1,

EY=E]

€

=0, 17

+1 d -1 €

Ej =a,,=E =d_.

Such setting means that 2 higher probability to excite a definite atomic substate
will be compensated by a lower sensibility of the detector t0 the decay of an atom
from this substate and vice versa. As a rtesult, when the detector clicks we have
again the equal probability that our atom-quantum interferometer has made a
pass |0)g——>|+1)¢—>|0)g or |0)—>|-1e—> |0) , which means that the
information about preference to excite a specific atomic state can be erased by an
appropriately organized observation. Applying quantitatively the method used above,
we can write the probability of detecting fluorescence

p=2d’(1-d)(1+coswt), (18)

where a=a%1= a%.. The expression obtained is in full agreement with the pre-
dictions made in our qualitative discussion above.

IIL. DISCUSSION AND CONCLUDING REMARKS

In the previous Section, yet unexploited possibilities were shown how the use
‘of a single atom as quantum interferometer offers verification of the foundations of
quantum mechanics.

Can we find a real atom suitable t0 perform the experiments proposed in this
paper? There may be several candidates, but the *'Ca atom is probably the best one.
This atom has a (4s 15, ground state and a (4S4p1) 1p, excited state. The
transition wavelength is 4227 A, which is in the visible region of the spectrum. This
atom has no hyperfine structure, which counld complicate interpretation of the results.
The lifetime 7 of the excited state is a few ns. Ca atoms have already been used several
times to produce photon pairs for optical experiments testing the foundations of
quantum mechanics [8, 9, 24], but, of course, Ca is not the only possible candidate.

Interference experiments with single atoms have remarkable advantages in
comparison with single-particle interferometers. One can use simultaneously many
identical atom-interferometers. Experiments can be carried out in thermal cells or in
atomic beams. An ensemble of atoms can be irradiated with rather intense laser light.
At these conditions, every atom at a time will be able to absorb only one photon,
but if the laser pulse is short enough in comparison with the atom lifetime 7 and
frequency w, then the interference beats from all atoms will be synchronized by
excitation. As a result, we observe an intense interference signal that can be detected
with conventional technique. We need not collect data for many hours to obtain a
reasonable signal-to-noise ratio, as it sometimes happens with traditional single-par-
ticle interferometers, see {11].

An argument can be put forward that the interference of atomic states in the
analyzed sense is less interesting and less striking than interference of photon states
in single- and two-particle interferometers because coherent atomic states contrary
‘to photon states in these interferometers are not spatially separated.
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This is only partially true because coherent partial components of atomic wave
function in the discussed experiments differ in the spatial orientation of angular
momentum. It seems 1o be equally important to examine what it means and how it
can be understood that a photon is simultaneously in several places in space, or what
it means that an atom has simultaneously several (opposite |~1). and |+1) in
the discussed examples) orientations of the angular momentum in space.

Finally, in Stern—Gerlach type setups it is possible in general to have coherently
excited atomic states that differ in the angular momentum orientation and, at the
same time, are separated in space.

Another objection that can be made is that in proposed experiments with an
atom we actually observe the same single-photon quantum interference, only the
photon is prepared in a peculiar way. This argument can be dismissed because in the
analysis of the proposed experiments we used a semiclassical approach in which only
the atom is considered quantum mechanically, while the light — classically. In this
case, light serves only as the information carrier allowing one to obtain the informa-
tion about interference of atomic states.

If atoms are also treated classically as ordinary dipole oscillators, instead of
Eq. (11) we will have [16)

P:%[H%oos(wr—zg)], (19)

where, instead of interference visibility 1 in case of the analyzed atomic transition,
now we have visibility only 1/7 . This difference can serve as a quantitative measure
of the nonclassicality of the described interference. In classical approach, the physical
meaning of o is the frequency of precession of an oscillator in an external mag-
netic field. Difference between amplitudes 1 in Eq. (11) and 1/7 in Eq. (19)
serves as a measure of "nonclassicality” of the quantum interference. This nonclas-
sicality is a one-particle interference counterpart of Bell’s inequality [6] derived
to characterize the difference of observable results in quantum and classical ap-
proaches in case of two-—particle interference.

Actually, the effect of atomic state interference has already been known to
atomic physicists [15], but it was never applied in experiments to verify the founda-
tions of quantum mechanics. In atomic physics, this effect—known as "quantum
beats"— is used to measure such atomic properties as magnetic moment, hyperfine
splitting, etc.

The use of a single atom as quantum interferometer is not restricted to the
0—>1-—> 0 transition only. Practically every transition is suitable, but for higher
angular momentum values the number of coherently excited substates will be larger.
It will make the description more complicated only technically, since the theory itself
is well-developed [16, 20]. Exploitation of states with larger j values of angular
momentum quantum number can also bring some advantages. First, at nonlinear light
absorption we can excite many substates (e.g., partial wave functions) coherently [16,
25]. It will resemble multi-particle interference, or interference gratings in optics. As
we know, in this case the interference peaks are much narrower and sharper. This
fact can prove advantageous in precision measurements. Second, in special conditions
(which are analyzed in detail in [26]), even if we have but pairs of coherently excited
substates (several of them simultaneously in one atom or molecule) we can again
expect very sharp and narrow resonances in the obtained interference pattern. And,
finally, by coherently excited particles with.large angular momentum values, say
j ~100 (usually in the case of molecules), we still have a quantum interference, but
these angular momentum states are almost classical and can be described at the same

48



time quantum-mechanically, using quantum density matrix formalism, and classically,
using continuous probability density of the spatial orientation of angular momentum
j- It means that in such systems we can address another striking problem — namely,
how the quantum interference will look in a transition to a classical limit. As is shown
in [16, 25), the general answer is that it will survive, but this question deserves special
attention and further investigation.
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ATSEVISKS ATOMS KA KVANTU INTERFEROMETRS
M. Auzins
Anotiacija

Raksta ir paradita iesp&ja atomu lepkiskA momenta kvantu superpozicijas
stavokl] izmantot ka kvantu interferometru. Tiek apspriesta tada interferences ekspe-
rimenta ar atomiem iesp&jama realizicija, kas biitu lidzigs viendalinas un divdalinu
eksperimentiem, kuri 11dz $im ir tikudi realizéti ar fotoniem. Ir analiz&tas interferences
ainas redzamibas izmainas atkaribd no pieejamas informacijas par atoma stavokli.
Raksta ir apspriesta iespéjamiba izveidot "kvantu dzeé§gumijas” tipa eksperimentu ar
atomiem. Sada tipa eksperimenti jau ir realizéti izmantojot fotonus.

Tiek analiz&tas priekSrocibas un trikumi, kas piemit kvantu interferences
eksperimentu realizicijai ar atomiem salidzinot ar lidziga tipa viendalinas un divda-
linu eksperimentiem, kas ir realizéti izmantojot fotonus. Ir apspriesta starpiba starp.
viendalinu superpozicionilo stavokli, kad komponentes ir telpiski atdalitas un situ3-
ciju, kad superpozicionala stavokli atrodas lenkiskd momenta komponentes.

12.03.1998.
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