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General inequalities for the relaxation constants of polarization moments are examined. Concrete numerical limitations for the

values of these constants are obtained.

In recent years it has been generally accepted to
characterize the distribution of the angular momen-
tum j of atomic as well as molecular states in the
framework of the irreducible tensorial operators
T'%. The state is described by means of polarization
moments p§, which are the expansion coefficients of
the angular momentum density matrix p,,, on the
tensorial operators T%:

2 K
Pmm = 2 z plé(TlQ()mm'- (1)
K=00=-K

Polarization moments have a very clear physical
meaning. Thus a moment with rank K=0 charac-
terizes the population of the level, with K= 1 the ori-
entation, and with K=2 the alignment [1].

One of the general advantages of this approach is
that for isotropic relaxation processes the compo-
nents of polarization moments change indepen-
dently, and the relaxation rates of these components
yx depend only on the rank K of the polarization mo-
ment [1]. In the case of molecules, when the quan-
tum number j of the angular momentum appears to
be high there is a great number of polarization mo-
ments characterizing the state. As has been dem-
onstrated in ref. [2] by using polarization moment
relaxation rate measurements in simple thermal cells
the information on stereochemical forces in molec-
ular collision dynamics may be obtained. Such mea-
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surements were performed first for the case of I, and
later for many other diatomic molecules, see ref. [2]
and work cited therein.

If the information about the relaxation of different
polarization moments is obtained from the laser-in-
duced fluorescence measurements then only polari-
zation moments up to rank K=4 have a direct in-
fluence on the dependence of the fluorescence
intensity on the polarization of the absorbed and de-
tected photons [3]. Nevertheless the higher rank
moments may play an important role for example in
experiments with optical pumping of molecules. So
at rather moderate laser light intensity the polani-
zation moments up to rank K=10 due to nonlinear
coupling with smalier-rank polarization moments
have a significant influence on the laser-induced flu-
orescence signals [4].

For all that, as demonstrated in refs. [1,5], the re-
laxation rates yx cannot be absolutely arbitrary. They
must satisfy certain inequalities. Thus, in ref. {5] the
system of inequalities

Y, QK+1) (=1

K
i i K\(j J K)-
s 3
x(m -m 0)(m, —m, 0)% 0
m#m, (2)

has been obtained, where 7 is yx—7, and the quan-
tity in brackets is a 3j symbol. Another system of
inequalities
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(= 1)+ Y (—1)“(2K+1){jﬁ J K}mo,
K J X

<<y, (3

different from the previous one, is given in ref. [1],
where the quantity in curly brackets is a 6j symbol.
It should be stressed that different authors use dif-
ferent normalizations of polarization moments;
nevertheless the inequalities (2) and (3) are valid
independent of normalization. For example, the au-
thors of the cited papers [1] and [5] use a different,
K-dependent, normalization of 7%, which leads to a
different normalization of p§, yet both systems (2)
and (3) are valid in both cases.

Beside their general significance, the given ine-
qualities should be taken into account when relax-
ation processes are described phenomenologically,
as well as in computer approximations of experi-
mental data with theoretical curves, see for example
refs. [6-8]. Systems (2) and (3) contain a different
number of independent inequalities. Taking into
consideration the symmetry properties of 3j symbols
[9], it is quite simple to show that system (2) con-
tains j(j+ 1) independent inequalities, when j is an
integer, and j(j+1)+1/4 inequalities, when j i1s a
half-integer. This means that for j>3/2 the number
of inequalities exceeds (and for large j values by a
considerable amount) the number of r¢laxation con-
stants J%. In the case of (3) the number of inequal-
ities coincides with the number of constants . Let
us assume that all relaxation constants  are mea-
sured in units of one of them, say #,. In this case in-
equalities (2) or (3) in (2j—1)-dimensional space
define the region of allowed values of 7/7,. As an
illustration, this region is shown in fig. 1 for j=3/2.
Each straight line in the figure presents on¢ ine-
quality, The region of 7,/7, allowed by inequalities
(2) is denoted by horizontal strokes, and the region
allowed by inequalities (3) by vertical ones. As may
be seen, in this case system (3) imposes more strict
limitations on the constants 7. From the results of
a computer analysis presented below we show that a
similar situation occurs for arbitrary j values (at least
for j<70).

In the general case of arbitrary j values it is not
casy to present in (2j—1)-dimensional space the area
of allowed /7, values. In order to characterize this
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area it is possible to propose the following approach.
Of all permitted 7x/7, values it is necessary to de-
termine the minimal and the maximal one for each
rank K. Here it is necessary to take into considera-
tion that all maximum or all minimum values of
Jx/ 7, cannot always be reached simultaneously. This
assertion may be illustrated by fig. 1 in the case of
the system of inequalities (2). The minimum value
7,/7. =0 is attained when 7;/5, =1, but the mini-
mum value 7/, =1/6 is attained when §,/, =
1/2.

An analysis of (2), in the case when the number
of inequalities considerably exceeds the number of
constants 7/, shows that it is possible to make use
of the Monte Carlo method, i.e. one must generate
by means of a computer random points in the
(2j~1)-dimensional space of /7, and from all
points hit into the allowed region (simultaneously
satisfying all inequalities (2)) one must choose the
minimal and the maximal values of constants
Jx/7, for each rank K.

In the analysis of (3), when the number of in-
equalities is equal to 2 it 1s possible to use another
method of examination of the permitted region for
¥/ 7. One can pass from the system of inequalities
to a system of equalities and solve them by alter-
nately “switching off ” one equality. In this way we
will find in the (2j—1)-space “corner point” (see

b 7
6 36
4t
(15

r /t

N E
\\ /ﬁ //:

(01) 3 =4 (25
/1L [

47 (’é%}}

/. s i f I

A \\ 2 4 jg/j;

Fig. 1. Allowed region of the parameters 7./7, in the case j=
3/2, determined by the system of inequalities (2) and {3).
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fig. 1 in the case of inequalities (3) ) coordinates for
the region of allowed values of 7x/#,. From all co-
ordinates of these corner points we must select those
which correspond to the minimal and the maximal
values of 9/¥, for each rank K.

By these methods we carried out an analysis of the
systems of inequalities (2) and (3) for j<70. It be-
came clear, that for these j values, system (3) intro-
duces more strict limitations on the minimal values
of Jx/7 than system (2), and both systems intro-
duce the same limitations on the maximal values of
Fx/7,. In table 1 for j<10 the results of absolute
minimal values of 7/%, given by (3) are presented.
In table 2, for the same j values, the simultaneously
existing minimal values of /7, from (3) are pre-
sented. It may be easily seen that in both cases all
these values are positive and do not exceed 0.6. A
similar situation holds also for larger j values, at least
for j<70.

Absolute maximal values of 7x/y, can all be ap-
proached simultancously and are given by K(K+1)/
2. These values are thus independent of j.

These restrictions lead to one very general con-
sequence to which we want to draw attention. If it
is known that the relaxation rate y, of the population
equals one particular rate y, with K#0, then all re-
laxation rates yx must be equal. This statement may
be important in the analysis of some relaxation pro-
cesses in molecules, see for example refs. [10-13].

In some special cases for minimal and maximal
values of /7, analytical expressions can be de-
rived. In ref. [1] the following expansion of 7y is
presented:

Pe= Y aAy, (4)
xz1
with

aKJ:=(2j+l)_l—(_1)K+x+2j{i J. K}, (5)
J X
but 4,>0. It is easy to understand that
(akx/alx)min <?K/)71 < (aKx/alx)max . (6)

In the last expression the minimum and the maxi-
mum is assumed on the parameter 3. As demon-
strated in ref. [1]

(@3] Q13) min =221/ A1 21y (72)
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and

(A/ Dy ) max =21/ @1y (7b)

Unfortunately it is not possible to verify the gen-
eralization of (7a) and (7b) for arbitrary values of
K. Yet a numerical analysis of (2) and (3) dem-
onstrates that the generalization of (7b),

(aKx/alz)max=aK1/all=K(K+l)/z , (8)

is valid for arbitrary values of X, In order to derive
an analytical formula for a,,/a;, we have made use
of the analytical expressions for 6j symbois from ref.
[9]1.

With the aid of the analytical formulas for 6j sym-
bols it is also possible to obtain

ke _ 1
iy 1+j/G+1)

x (,_(_I)K(ZJ—K+1)(2j—K+2) (2;'))
(2j+2)(2j+3) .. (Zj+K+1) )’

(9)

but expression (9) does not lead to the results of ta-
ble 1. This means that for arbitrary K values this
expression does not give the values of the absolute
minimum of Jx/7,. Nevertheless, it does give the si-
multaneously existing minimal values of /9, , pre-
sented in table 2, and also for larger j values which
are not presented in the table.

In this connection it is useful to derive expressions
for ak(2;,/a;: (2 in some special cases. Thus

(7_2;_) _ %)

j}'l min(simualt)  41(2)

» B2 T(2))
291 r(2j+1/2)°

_Jtl
T 2+1

(-1 (10)

with I'(x) being the gamma function. These for-
mulae in the high j limit give

B) g 0
(71 min(simult) 2]+ 1

One must understand that the obtained limita-
tions are less strict than inequalities (2) and (3).
They do not characterize the shape of the allowed
region of relaxation constants. The restrictions de-
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fine the multidimensional parallelepiped in (2j—1)-
dimensional space, which is encircled around the al-
lowed region of 7x/7, which satisfies the obtained
restrictions. Nevertheless the obtained restrictions
are much more obvious and they give a good idea
about limitations imposed by inequalities (2) and
(3).

The presented tables and formulae for the mini-
mal values and the formulae for the maximal values
of 7x/7, seem to be very useful in the case when not
all the relaxation constants with 0< K< 2j are taken
into consideration. In this situatton it is impossible
to use inequalities (2) or (3} directly, but the lim-
itations for $x/7, obtained in this paper are still valid.
It is especially important in the case of molecules
when the angular momentum values are, as a rule,
large and not all the possible polarization moments
of the state are taken into account in the description
of the physical process, see for example ref. [14].

I am indebted to Professors S.D. Rosner and R.A.
Holt for providing me with their computer programs
for angular momentum sum coefficients. I would like
to acknowledge the assistance of A. Gumilevskij in
the computer calculations. This project was sup-
ported by the Latvian Science Council grant 90.467.
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