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General inequalities for the relaxation constants of polarization moments are examined. Concrete numerical limitations for the 
values of these constants are obtained. 

In recent years it has been generally accepted to 
characterize the distribution of the angular momen- 
tum j of atomic as well as molecular states in the 
framework of the irreducible tensorial operators 
PG. The state is described by means of polarization 
moments p& which are the expansion coefficients of 
the angular momentum density matrix pm,,,, on the 
tensorial operators pz: 

Polarization moments have a very clear physical 
meaning. Thus a moment with rank K=O charac- 
terizes the population of the level, with X= 1 the ori- 
entation, and with K=2 the alignment [ I]. 

One of the general advantages of this approach is 
that for isotropic relaxation processes the compo- 
nents of polarization moments change indepen- 
dently, and the relaxation rates of these components 
yK depend only on the rank K of the polarization mo- 
ment [ 11. In the case of molecules, when the quan- 
tum number j of the angular momentum appears to 
be high there is a great number of polarization mo- 
ments characterizing the state. As has been dem- 
onstrated in ref. [ 21 by using polarization moment 
relaxation rate measurements in simple thermal cells 
the information on stereochemical forces in molec- 
ular collision dynamics may be obtained. Such mea- 
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surements were performed first for the case of I2 and 
later for many other diatomic molecules, see ref. [ 21 
and work cited therein. 

If the information about the relaxation of different 
polarization moments is obtained from the laser-in- 
duced fluorescence measurements then only polari- 
zation moments up to rank K=4 have a direct in- 
fluence on the dependence of the fluorescence 
intensity on the polarization of the absorbed and de- 
tected photons [3]. Nevertheless the higher rank 
moments may play an important role for example in 
experiments with optical pumping of molecules. So 
at rather moderate laser light intensity the polari- 
zation moments up to rank K= 10 due to nonlinear 
coupling with smaller-rank polarization moments 
have a significant influence on the laser-induced flu- 
orescence signals [ 41. 

For all that, as demonstrated in refs. [ 1,5 1, the re- 
laxation rates YKcannot be absolutely arbitrary. They 
must satisfy certain inequalities. Thus, in ref. [ 51 the 
system of inequalities 

1 Yrn’ 

mfml, (2) 

has been obtained, where & is yK- y. and the quan- 
tity in brackets is a 3j symbol. Another system of 
inequalities 
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1 <x=S2j, (3) 

different from the previous one, is given in ref. [ 11, 
where the quantity in curly brackets is a 6j symbol. 
It should be stressed that different authors use dif- 
ferent normalizations of polarization moments; 
nevertheless the inequalities (2) and (3) are valid 
independent of normalization. For example, the au- 
thors of the cited papers [ 1 ] and [ 5 ] use a different, 
K-dependent, normalization of fz, which leads to a 
different normalization of pa, yet both systems (2) 
and (3 ) are valid in both cases. 

Beside their general significance, the given ine- 
qualities should be taken into account when relax- 
ation processes are described phenomenologically, 
as well as in computer approximations of experi- 
mental data with theoretical curves, see for example 
refs.. [ 6-8 1, Systems (2 ) and ( 3 ) contain a different 
number of independent inequalities. Taking into 
consideration the symmetry properties of 3j symbols 
[ 91, it is quite simple to show that system (2) con- 
tains jut 1) independent inequalities, when j is an 
integer, and j(jt 1) t l/4 inequalities, when j is a 
half-integer. This means that for j> 3/2 the number 
of inequalities exceeds (and for large j values by a 
considerable amount) the number of relaxation con- 
stants TK. In the case of (3) the number of inequal- 
ities coincides with the number of constants &. Let 
us assume that all relaxation constants & are mea- 
sured in units of one of them, say y’, . In this case in- 
equalities (2) or (3) in (2j- 1 )-dimensional space 
define the region of allowed values of &/y”, , As an 
illustration, this region is shown in fig. 1 for j=3/2. 
Each straight line in the figure presents one ine- 
quality. The region of &/j$ allowed by inequalities 
(2) is denoted by horizontal strokes, and the region 
allowed by inequalities (3) by vertical ones. As may 
be seen, in this case system (3) imposes more strict 
limitations on the constants &. From the results of 
a computer analysis presented below we show that a 
similar situation occurs for arbitrary j values (at least 
for j<70). 

In the general case of arbitrary j values it is not 
easy to present in (2j- 1 )-dimensional space the area 
of allowed &/Tl values. In order to characterize this 
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area it is possible to propose the following approach. 
Of all permitted &/y”, values it is necessary to de- 
termine the minimal and the maximal one for each 

rank K. Here it is necessary to take into considera- 
tion that all maximum or all minimum values of 
jK/jl cannot always be reached simultaneously. This 
assertion may be illustrated by fig. 1 in the case of 
the system of inequalities (2). The minimum value 
X/p, =O is attained when h/jj, = 1, but the mini- 
mum value TJf, = l/6 is attained when PJy”, = 
l/2. 

An analysis of (2), in the case when the number 
of inequalities considerably exceeds the number of 
constants &/PI, shows that it is possible to make use 
of the Monte Carlo method, i.e. one must generate 
by means of a computer random points in the 
(2j- 1 )-dimensional space of jK/yI and from all 
points hit into the allowed region (simultaneously 
satisfying all inequalities (2) ) one must choose the 
minimal and the maximal values of constants 
jK/jl for each rank K. 

In the analysis of (3), when the number of in- 
equalities is equal to 2j it is possible to use another 
method of examination of the permitted region for 
j$JB1. One can pass from the system of inequalities 
to a system of equalities and solve them by alter- 
nately “switching off ” one equality. In this way we 
will find in the (2j- 1 )-space “corner point” (see 

Fig. I. Allowed region of the parameters j$JKIyI, in the case j= 
3/2, determined by the system of inequalities (2) and (3 ). 



Volume 198, number 3,4 CHEMICAL PHYSICS LETTERS 9 October 1992 

fig. 1 in the case of inequalities (3) ) coordinates for 
the region of allowed values of &/j, . From all co- 
ordinates of these comer points we must select those 
which correspond to the minimal and the maximal 
values of yK;(/j$ for each rank K. 

By these methods we carried out an analysis of the 
systems of inequalities (2) and ( 3 ) for j< 70. It be- 
came clear, that for these j values, system ( 3) intro- 
duces more strict limitations on the minimal values 
of &/jr1 than system (2) and both systems intro- 
duce the same limitations on the maximal values of 
&/F,. In table 1 for j< 10 the results of absolute 
minimal values of j$Jp, given by (3) are presented. 
In table 2, for the same j values, the simultaneously 
existing minimal values of j&/p, from (3) are pre- 
sented. It may be easily seen that in both cases all 
these values are positive and do not exceed 0.6. A 
similar situation holds also for larger j values, at least 
for j<70. 

Absolute maximal values of &/y, can all be ap 
proached simultaneously and are given by K( Kt 1) / 
2. These values are thus independent of j. 

These restrictions lead to one very general con- 
sequence to which we want to draw attention. If it 
is known that the relaxation rate y. of the population 
equals one particular rate yK with KZO, then all re- 
laxation rates yK must be equal. This statement may 
be important in the analysis of some relaxation pro- 
cesses in molecules, see for example refs. [ lo- 13 1. 

In some special cases for minimal and maximal 
values of &;rl& analytical expressions can be de- 
rived. In ref. [ 1 ] the following expansion of & is 
presented: 

with 

jj K aKx=(2j+1)-‘-(-1)K+x+Zj . c I j x ’ (5) 

but A,> 0. It is easy to understand that 

(%,l%)nl1” ~A/~, G (~Kxl~lJmax . (6) 

In the last expression the minimum and the maxi- 
mum is assumed on the parameter K, As demon- 
strated in ref. [ 1 ] 

(aZxl~iX)min =“2(2j)lai(2j) (7aJ 

and 

(a~X/a&a,=a2Ja~~ . (7b) 

Unfortunately it is not possible to verify the gen- 
eralization of (7a) and (7b) for arbitrary values of 
K. Yet a numerical analysis of (2) and (3) dem- 
onstrates that the generalization of (7b), 

(a&Q,,, =uKl/a,, =K(K+ 1)/2 , (8) 

is valid for arbitrary values of K. In order to derive 
an analytical formula for ~,,/a,, we have made use 
of the analytical expressions for 6j symbols from ref. 

[91. 
With the aid of the analytical formulas for 6j sym- 

bols it is also possible to obtain 

%2j) 1 
-= l+j/(j+l) ul(Y) 

’ ( l-(-l) ,(2j-K+1)(2j-K+2) . . . (2j) 

) (2j+2)(2j+3) . . . (2j+Ktl) ’ 

(9) 

but expression (9) does not lead to the results of ta- 
ble 1. This means that for arbitrary K values this 
expression does not give the values of the absolute 
minimum of jrKK/jJ. Nevertheless, it does give the si- 
multaneously existing minimal values of&/y,, pre- 
sented in table 2, and also for larger j values which 
are not presented in the table. 

In this connection it is useful to derive expressions 

for %zj)lar (Zj) in some special cases. Thus 

min(simult) ‘l(4) 

=~_(_l)2,xLiz Wj) 
24j-' r(2jt l/2) ’ 

(10) 

with r(x) being the gamma function. These for- 
mulae in the high j limit give 

0 gj jtl 

71 min(simult) x 2j+l’ 
(11) 

One must understand that the obtained limita- 
tions are less strict than inequalities (2) and (3). 
They do not characterize the shape of the allowed 
region of relaxation constants. The restrictions de- 
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.
5
5
8
1
 0
.
5
0
8
4
 0
.
5
3
0
0
 0
.
5
2
1
6
 0
.
5
2
4
5
 0
.
5
2
3
6
 0
.
5
2
3
9
 0
.
5
2
3
8
 0
.
5
2
3
8
 0
.
5
2
3
8
 0
.
5
2
3
8
 0
.
5
2
3
8
 0
.
5
2
3
8
 0
.
5
2
3
8
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fine the multidimensional parallelepiped in (2j- I)- 
dimensional space, which is encircled around the al- 
lowed region of &/j, which satisfies the obtained 
restrictions. Nevertheless the obtained restrictions 
are much more obvious and they give a good idea 
about limitations imposed by inequalities (2) and 

(3). 
The presented tables and formulae for the mini- 

mal values and the formulae for the maximal values 
of j&/Y, seem to be very useful in the case when not 
all the relaxation constants with 0 <KG 2j are taken 
into consideration. In this situation it is impossible 
to use inequalities (2 ) or (3) directly, but the lim- 
itations for &/PI obtained in this paper are still valid. 
It is especially important in the case of molecules 
when the angular momentum values are, as a rule, 
large and not all the possible polarization moments 
of the state are taken into account in the description 
of the physical process, see for example ref. [ 141. 

I am indebted to Professors S.D. Rosner and R.A. 
Holt for providing me with their computer programs 
for angular momentum sum coefficients. I would like 
to acknowledge the assistance of A. Gumilevskij in 
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ported by the Latvian Science Council grant 90.467. 
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