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The low-energy capture of a dipolar diatomic molecule in an adiabatically isolated electronic state
with a good quantum number � �Hund’s coupling case a� by an ion occurs adiabatically with
respect to rotational transitions of the diatom. However, the capture dynamics may be nonadiabatic
with respect to transitions between the pair of the �-doubling states belonging to the same value of
the intrinsic angular momentum j. In this work, nonadiabatic transition probabilities are calculated
which define the �-doubling j-specific capture rate coefficients. It is shown that the transition from
linear to quadratic Stark effect in the ion-dipole interaction, which damps the T−1/2 divergence of the
capture rate coefficient calculated with vanishing �-doubling splitting, occurs in the adiabatic
regime with respect to transitions between �-doubling adiabatic channel potentials. This allows one
to suggest simple analytical expressions for the rate coefficients in the temperature range which
covers the region between the sudden and the adiabatic limits with respect to the �-doubling
states. © 2008 American Institute of Physics. �DOI: 10.1063/1.2913519�

I. INTRODUCTION

Improving insight into the chemistry of the interstellar
medium1 has directed attention to the rates of elementary
chemical reaction at very low temperatures, among which
ion-molecule reactions play an important role �for recent re-
views, see, e.g., Refs. 2–5�. Under low temperature condi-
tions, capture-controlled processes are most relevant such
that capture theories of reaction rates are of particular inter-
est. Such theories are relatively well understood for encoun-
ters of ions with electronically closed shell molecules �see,
e.g., Refs. 6–8�, while capture of open shell species by ions
is characterized by a series of complications. Early
treatments6,9,10 left the impression that the rates diverged at
T→0 K which, however, clearly is not true. The present se-
ries of articles11 try to clarify the situation by providing a
more elaborate treatment for rates of capture of polar open
shell radicals by ions. Our interest not only focuses on tem-
peratures in the 10 K range of interstellar molecular clouds
but we also try to extend the range essentially down to
0 K.12–14 In addition, we try to provide rates for fully state-
resolved species.

Following our concept, we have to inspect the basics of
scattering theory. State-specific rate coefficients for capture
then have to be calculated by solving the scattering equations
for a half-collision problem with absorbing boundary condi-
tions at the complex surface, the so-called statistical-closed-
coupled method.15–18 This general approach is simplified
when the capture occurs under adiabatic conditions with re-
spect to transitions between different rotational states. Then,
the optimal way to formulate the scattering equations is to

use the adiabatic rotronic basis since the coupling to adia-
batically closed channels, which is present in an arbitrary
basis, appears through the adiabatic potentials. This ap-
proach, known under different acronyms �statistical adiabatic
channel method,19 perturbed rotational state method,20,21

adiabatic invariance method,22,23 adiabatic capture centrifu-
gal sudden approximation24�, uses a classical description for
the relative motion of the colliding partners. At very low
temperatures, the quantal effects of relative motion begin to
show up, and the transition from classical to quantum behav-
ior was elaborated, e.g., in Refs. 12–14. The situation be-
comes more complicated when open electronic states are in-
volved. The given approaches implicitly assume that the
capture occurs in the sudden regime with respect to closely
spaced molecular states �spacing much smaller than the spac-
ing between the rotational levels�. Such closely spaced mo-
lecular states arise as the result of intramolecular nonadia-
batic interaction �the �-doubling effect for molecules in an
open electronic state� and the hyperfine interaction. If the
splitting between such closely spaced states is ignored, the
rate coefficient for capture of a dipole molecule in an open
electronic state by an ion shows the T−1/2 divergence in the
limit T→0. This divergence is an artifact due to assumption
of a persistence of the linear Stark interaction6,9,10 between a
molecule and an ion up to very large separations. In reality,
however, the Stark effect becomes quadratic. This removes
the intramolecular degeneracy of the rotational states and
results in a suppression of the T−1/2 divergence of the capture
rate at very low temperatures. The change in the capture
dynamics of a dipolar molecule by an ion with decreasing
collision energy �or translational temperature� was qualita-
tively discussed in Ref. 25. There was, however, no system-
atic quantitative study of this change because of the compli-a�Electronic mail: shoff@gwdg.de.
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cated pattern of adiabatic channel potentials and possible
nonadiabatic transitions between closely spaced adiabatic
channel �AC� states that account for �-doubling and hyper-
fine interaction. In order to avoid the involved computations
of AC potentials with simultaneous �-doubling and hyper-
fine structure effects and the resulting multichannel nonadia-
batic interactions, in the present study, we restrict ourselves
to the case that the �-doubling splitting exceeds noticeably
the hyperfine structure splitting. Then, it is possible to sim-
plify the general treatment by totally ignoring the hyperfine
structure. The effect of the latter is considered in a separate
paper devoted to capture of the NO by C+, see Ref. 26. Our
interest in the theory of nonadiabatic transitions between
�-doubling levels was also prompted by the possibility to
experimentally investigate inelastic scattering from indi-
vidual �-doubling states, for instance, in collisions of
NO�X 2�1/2 , j=1 /2� and OH�X 2�3/2 , j=3 /2� with noble-
gas atoms.27–30

The aim of this paper is to extend the general adiabatic
channel treatment to the case when the capture dynamics
with respect to �-doubling states in ion-molecule collisions
is essentially nonadiabatic and to illustrate the transition be-
tween the sudden and adiabatic regimes with respect to these
states. We assume that the molecular state is characterized by
Hund’s coupling case a �isolated electronic state with the
good quantum number �, the absolute value of the projec-
tion of the electronic angular momentum onto the molecular
axis� and completely neglect the hyperfine interaction. In
Sec. II, we discuss the hierarchy of approximations in the
capture dynamics of a dipolar diatom by an ion. Section III
describes the calculation of nonadiabatic transition probabili-
ties between �-doubling adiabatic channel states. Section IV
presents calculations of nonadiabatic capture rates under the
condition that the �-doubling spacing is much lower than the
thermal energy. Section V considers the adiabatic capture for
arbitrary relations between the �-doubling spacing and the
thermal energy. Section VI contains a general discussion and
our conclusion.

II. HIERARCHY OF APPROXIMATIONS IN THE
CAPTURE DYNAMICS OF A POLAR DIATOM
AND AN ION

AC states and potentials are generated by diagonaliza-
tion of the Hamiltonian of the collision partners at a fixed
interfragment distance R and by choosing the collision axis
R, accounting for the quantization of the intrinsic angular
momentum j of the diatom. For a nonvibrating diatom �or a
diatom in a given vibrational state�, the Hamiltonian consists
of the rotational energy of the diatom and the interaction
energy between the diatom and the ion.

The rotational energy spectrum of the diatomic molecule
in an open shell degenerate electronic state with a good
quantum number �, which consists of doublets belonging to
the same value of j �the �-doubling phenomenon�. These
components, conventionally called e and f components,31

can also be labeled by the parity index � which is related to
the parity � as �=��−1� j−1/2, see Refs. 32–34. The parity
quantum number � for the lowest components usually alter-

nates along the ladder of the quantum numbers j, while �
remains the same. In this work, we label the lower and upper
components by �= +1 and �=−1, respectively, in accord
with the assignment for NO�X 2�1/2�, see Ref. 34. The rota-
tional energy levels then are written as Ej,�, and the splitting
�Ej =Ej,−1−Ej,+1 between the components of the doublet re-
sults from the rotational nonadiabatic and spin-orbit coupling
of the given electronic state to other electronic states.

The interaction between the diatom and the ion is taken
in a form appropriate for low-energy collisions, i.e., it in-
cludes only the long-range limit of the ion-molecule interac-
tion. Namely, it includes the charge-permanent dipole,
charge-permanent quadrupole, and charge-induced dipole
terms.35 For simplicity, we neglect the anisotropy in the
charge-induced dipole term and assume that the quadrupole
tensor is axially symmetric. In this way, we consider an in-
teraction potential of the form

V�R,�� =
q�D

R2 P1�cos �� +
qQ

R3 P2�cos �� −
q2	

2R4 , �1�

where � is the angle between the collision axis R �directed
from the center of mass of the diatom toward the ion� and the
molecular axis r �directed along the dipole moment vector�,
P1 and P2 are the Legendre polynomials, �D, Q, and 	 are
the dipole moment, quadrupole moment, and the mean po-
larizability of the diatom, respectively, and q is the charge of
the ion.

If the Hamiltonian Ĥ is diagonalized at a fixed interfrag-
ment distance R in the set of the free-molecule functions
�� ,� , j , 
̃�free, with 
̃ being the projection of the intrinsic
angular momentum onto the space-fixed quantization axis R,
it yields, as its eigenvalues, the AC energies W�R�. They can
be labeled by the exact quantum number 
̃ and a set of new
quantum numbers �we omit from now on the quantum num-
ber � which is the same for all states�. These new quantum
numbers can be written as j ,�, understanding that they have
their usual meaning only asymptotically �at the limit R→��
such that they are established by the adiabatic correlation of
Wj,�,
̃�R� with Ej,�. Once the eigenvalues Wj,�,
̃�R� are writ-
ten as

Wj,�,
̃�R� = Ej,� + Ṽj,�,
̃�R� , �2�

they define the AC potentials Ṽj,�,
̃�R�. Note that the AC
states �� , j , 
̃�AC are doubly degenerate with respect to the
sign of 
̃ such that the AC potentials can be written as

Ṽj,�,
�R�, where 
= �
̃�.
Calculations of state-specific cross sections and capture

rate coefficients, in principle, should use AC potentials

Ṽj,�,
�R�. However, the general treatment can be simplified
under conditions when nonadiabatic transitions between cer-
tain groups of states fall into the sudden or adiabatic regimes.
In the sudden regime, the population of the respective AC
states becomes statistical before the system reaches the char-
acteristic distance which corresponds to capture. Therefore,
the specification of the initial states with the quantum num-
bers within this group is redundant, and these states can be
removed both from the AC potentials and the scattering
equations. A well-known example of this approach is the
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calculation of rotationally specific capture rate coefficients
kj, which implicitly assumes that the capture is sudden with
respect to transitions between �-doubling components. Then
AC potentials are calculated from the Hamiltonian with the
rotational energy of the diatom without accounting for the
�-doubling. In our work,11 these AC potentials for a mol-
ecule in an isolated state of Hund’s coupling case a with the
quantum number � were written as Vj,m

Acc�R�. The quantum
number m was defined through its absolute value �m�=
 and
the condition that the positive/negative values of m corre-
spond to the attractive/repulsive charge-permanent dipole in-
teraction. �This definition coincides with the alternative defi-

nition m=−�
̃�sign��̃
̃�, where �̃ is the projection of the
intrinsic angular momentum onto the molecular axis with the
convention that the direction of the molecular axis coincides
with that of the dipole moment and the molecule interacts
with a positive ion.� For the sake of simplicity, we will write
Vj,m

Acc�R� simply as Vj,m�R�. At large distances, AC potentials
can be calculated analytically in the so-called perturbed rotor
�PR� approach which retains the same powers of R as the
potential in Eq. �1�. It incorporates first-order charge-
permanent dipole �cd� �proportional to R−2�, first-order
charge-permanent quadrupole �cq� �proportional to R−3�, and
the Langevin �L� term consisting of the charge-induced di-
pole �cid� plus second-order charge-permanent dipole terms
�both proportional to R−4�. The general expression for
Vj,m

PR �R� for an isolated electronic state ��� reads as11

Vj,m
PR �R� = Vj,m

cd �R� + Vj,m
cq �R� + Vj,m

L �R� , �3�

with the following partial contributions:

Vj,m
cd �R� = − smaj,m/R2,

aj,m = q�D�m��/j�j + 1� , �4�

Vj,m
cq �R� = bj,m/R3,

bj,m =
qQ�j�j + 1� − 3m2�

�2j + 3��2j − 1�
�j�j + 1� − 3�2�

j�j + 1�
, �5�

Vj,m
L �R� = cj,m/R4,

cj,m = −
	q2

2
+

�D
2 q2

2B
� �j2 − �2��j2 − m2�

j3�2j − 1��2j + 1�

−
��j + 1�2 − �2���j + 1�2 − m2�

�j + 1�3�2j + 1��2j + 3� � , �6�

where B is the rotational constant of the diatom �in energy
units�, sm=sign�m�, and aj,m is positive. In Eq. �4�, we write
sm�m� instead of m in anticipation of a generalization for
�-doubling effect �see Eq. �7� below�.

If the effects of �-doubling are included, the calculation
of the AC potentials, in general, should be performed taking
nonadiabatic interactions with higher electronic states into
account. However, this complication could not be relevant if
the �-doubling splitting is much smaller than the energy for
rotational transitions. Then, the effects of �-doubling will
show up when the AC potentials Vj,m�R� are adequately
given by their PR counterparts, Vj,m

PR �R�. The latter can be
modified in such a way that the term, which represents the
linear Stark effect, is transformed into a term describing an
intermediate Stark effect such that Vj,m

PR �R� is changed into

Ṽj,m
PR �R�. This transformation can be easily accomplished be-

cause, first, the quantum number j in the PR region can be

FIG. 1. AC potentials for capture of NO�X 2�1/2 , j=1 /2� by a positive ion
relative to the mean rotational energy of �=1 and �=−1 states. The AC PR
potentials are shown by the full lines, accurate AC potentials by dotted lines
�see text for details�. The triangle marks the distance R1/2,1/2

�r� =624 a.u.

FIG. 2. As in Fig. 1, for j=3 /2. The triangles mark the distances R3/2,1/2
�r�

=197 a.u. and R3/2,3/2
�r� =342 a.u.

FIG. 3. As in Fig. 1, for j=5 /2, The triangles mark the distances R5/2,1/2
�r�

=106 a.u., R5/2,3/2
�r� =183 a.u., and R5/2,5/2

�r� =236 a.u.
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identified to the rotational quantum number of the diatom,
and, second, the wave functions of the �-components of the
diatom with the quantum number j are positive and negative
linear combinations of � and −� states.31 Since only the
charge-dipole interaction mixes free states of different parity,
the �-doubling effect modifies solely the cd term in the PR

potential. Namely, the term Ṽj,m
cd , which describes the inter-

mediate Stark effect for cd interaction and includes the
�-doubling splitting �Ej, when presented in the j ,m nomen-
clature, reads as

Ṽj,m
cd �R� = −

sm

2
	��Ej�2 + �2aj,m/R2�2 + sm�Ej/2, �7�

where again positive/negative values of m refer to the
attractive/repulsive cd interaction in the intermediate Stark
effect regime. In the limit R→�, because of the adiabatic

correlation �=sign�m�, Ṽj,m
cd �R� converges to Ej,�, and for

�Ej→0, Ṽj,m
cd �R� passes into Vj,m

cd �R�. Therefore, the full PR
AC potentials that take into account the �-doubling effects
can be written as

Ṽj,m
PR �R� = Ṽj,m

cd �R� + Vj,m
cq �R� + Vj,m

L �R� , �8�

which has the following R-dependence in the regions of the
linear and quadratic Stark effect:

Ṽj,m
PR �R� → 
smaj,m/R−2 + bj,mR−3 + cj,mR−4 = Vj,m

PR �R� for aj,mR−2 � �Ej

bj,mR−3 + �cj,m − smaj,m
2 /�Ej�R−4 for aj,mR−2  �Ej ,

� �9�

The given hierarchy of the AC potentials will be used in our
calculation of state-specific capture rate coefficients for dif-
ferent temperature ranges specified by the characteristic tem-
perature T� for �-doubling �T���Ej /kB�.

Finally, we reiterate that an AC state with the quantum
number m is doubly degenerate with respect to the two pos-
sible signs of 
̃= � �m� or to the two possible values of the
symmetry index � related to the reflection of the AC state at
a plane passing through the collision axis. This degeneracy is
lifted when one passes from the AC approximation to the
axially nonadiabatic channel �ANC� approach when each
ANC state will correspond to a definite value of the total
angular momentum and a total parity of the collision
complex.

As an illustration to the above, we show AC potentials
for the system of a positive ion+NO�X 2�1/2 , j ,�� with j
=1 /2 �Fig. 1�, j=3 /2 �Fig. 2�, and j=5 /2 �Fig. 3�. In these

figures, the AC PR potentials Ṽj,m
PR �R� are shown by full lines

and accurate potentials �shown in the regions where they
noticeably deviate from the PR potentials� by the dotted
lines. The energy range in the right part of these figures is
chosen such that it illustrates the potentials in the region of
the intermediate Stark interaction; here, the potentials are
given relative to the mean rotational energy level, with a
�-doubling splitting which increases linearly with j
��Ej /kB=0.017�j+1 /2� K�, see Ref. 36. The energy range in
the left parts of these figures is chosen such that it shows the
potential barriers for the upper AC potentials. In this range,

the potentials Ṽj,m are well approximated by Vj,m, implying
that the �-splitting effect can be neglected. The left and right
parts cover a common range of NO-ion distances to facilitate
the comparison of the potentials shown for different energy
ranges. The following comments to Figs. 1–3 are in order.

�i� Fig. 1, j=1 /2. The symmetry of the AC potentials
with respect to the zero line in the right part of the
figure indicates the absence of a first-order charge-
quadrupole interaction and an only negligible contri-
bution of the charge-induced dipole interaction. The
AC PR potentials in the left part qualitatively cor-
rectly predict the potential barrier. As shown in Ref.
11, the AC PR potentials can be used for the approxi-
mate calculation of the reduced rate coefficient for
capture of NO�X 2�1/2 , j=1 /2� by C+ at T�0.1 K,
also see below.

�ii� Fig. 2, j=3 /2. The slight asymmetry of the AC poten-
tials with respect to the zero line in the right part of
the figure indicates a noticeable effect of the charge-
quadrupole interaction and some contribution of the
charge-induced dipole interaction. One also sees an
incipient deviation of the accurate potential with m
=1 /2 from its AC counterpart. The accurate potentials
in the left part noticeably deviate from their AC PR
counterparts. The attractive interaction is weaker
compared to the j=1 /2 case which is due to the result
of the smaller projection of the molecular dipole mo-
ment onto the collision axis. As a result, the capture
rate coefficient for j=3 /2 is noticeably smaller than
that for j=1 /2, see Ref. 11.

�iii� Fig. 3, j=5 /2. The strong asymmetry of the AC po-
tentials with respect to the zero line in the right part of
the figure indicates a larger effect of the charge-
quadrupole interaction and a noticeable contribution
of the charge-induced dipole interaction. A new fea-
ture �compared to j=1 /2 and j=3 /2� is the attractive
AC potential with m=1 /2 that correlates with the
upper �-component of the free molecular state. We
note in passing that the large-R representation of
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Ṽj,m
PR �charge-quadrupole plus modified Langevin in-

teraction, see Eq. �9�� provides a good approximation

to Ṽj,m
PR for R�300 a.u., where the interaction be-

comes smaller that about 0.02 K. The accurate poten-
tials in the left part quite strongly deviate from their
AC PR counterparts. The rate coefficient for j=5 /2 is
slightly smaller than that for j=3 /2, and its tempera-
ture dependence shows features which are similar to
the rate coefficient for capture of a molecule with van-
ishing dipole moment.11

Also shown in Figs. 1–3 �by triangles on the abscissa�
are the locations Rj,m

�r� of possible nonadiabatic transitions be-
tween the AC states �j ,m� and �j ,−m� �see next section�.

III. NONADIABATIC TRANSITIONS FOR �-DOUBLING
STATES

For temperatures T�T�, the passage of the potential
barriers by the collision partners toward the complex bound-
ary occurs under conditions where the effective AC poten-
tials between the molecule and the ion are governed by linear
Stark effect. However, during their mutual approach to the
barriers, the partners pass a region where the quadratic Stark
effect changes into linear Stark effect, and in this region

nonadiabatic transitions between the AC potentials Ṽj,m
PR and

Ṽj,−m
PR are possible. The nonadiabatic transition probability

Pj,m should be found from the solution of two coupled equa-
tions containing the amplitudes of the �j ,m�AC and
�j ,−m�AC states. Under the condition when the �-doubling
spacing �Ej is much smaller than the collision energy E,
these equations can be formulated in the “impact parameter
approximation” �i.e., in the common trajectory approxima-
tion for a rectilinear trajectory with a fixed velocity �� of
relative motion. The most important quantity that determines
the nonadiabatic transition probability is the Massey param-
eter � j,m. According to the standard procedure,37 it is defined
through the energy spacing �Ej, collision velocity �, and the
distance Rj,m

�i� from the value Rj,m
c at which the AC potentials

Ṽj,m
PR and Ṽj,−m

PR cross. Implicitly, Rj,m
�i� =ImRj,m

c �, where Rj,m
c is

found from the equation Ṽj,m
PR �Rj,m

c �= Ṽj,−m
PR �Rj,m

c �. Yet another
characteristics of the nonadiabatic event is Rj,m

�r� =ReRj,m
c �,

which approximately gives the position of the region where
nonadiabatic transitions occur. Taking the potentials in
the form of Eqs. �3� and �4�, we find Rj,m

c

=	2ajm /�Ej exp�i� /4�, i.e., Rj,m
�i� =Rj,m

�r� =	ajm /�Ej. The dis-
tances Rj,m

�r� for the NO+ion system are shown in Figs. 1–3.
The Massey parameter for nonadiabatic transitions be-

tween the AC states �j ,m� and �j ,−m� is written as

� j,m =
�EjRj,m

�i�

�v
=

1

2
	�Ej

E

2�aj,m

�2 , �10�

where � is the reduced mass of the colliding partners. If it is
large, the dimensionless quantity 	2�aj,m /�2 can be inter-

preted as the classical counterpart J̃j,m of the quantum num-
ber of total angular momentum for which the centrifugal

repulsion ��J̃j,m�2 /2�R2 compensates the first-order charge-
dipole attraction, −aj,m /R2. Unless aj,m is pathologically

small, J̃j,m is a large number.11 Thus, Eq. �10� can be rewrit-
ten as the product of small and large factors

� j,m =
1

2
	�Ej

E
J̃j,m �11�

such that � j,m may be of the order of unity even for a small
value of the ratio �Ej /E. We therefore conclude that, for T
�T�, the capture may occur in the nonadiabatic regime with
respect to transitions between the �-doubling components of
a given rotational state. With decreasing temperature, the ra-
tio �Ej /E increases, and the capture dynamics, still with
�Ej /E1, becomes adiabatic �i.e., Pj,m becomes negligibly
small�.

The nonadiabatic dynamics in the passage from the re-
gion of the quadratic Stark effect to the linear Stark effect,
under the condition �Ej /E1, is described by coupled time-
dependent equations for the amplitudes of the AC states
evolving along a straight-line trajectory. One can use differ-
ent basis functions in writing these equations. Here, we adopt
the basis of the AC states without the �-doubling interaction.
In this representation, the charge-dipole interaction is diago-
nal, while the �-doubling interaction appears as a coupling.

Omitting the subscripts in a and �E, the equations for
the amplitudes A+ and A− of these basis states are written in
the form

i�
d

dt
A− = +

a

R2A− +
�E

2
A+,

i�
d

dt
A+ = −

a

R2A+ +
�E

2
A−. �12�

These equations should be integrated along a trajectory with
the impact parameter b such that

R�t� = 	b2 + v2t2. �13�

If we introduce a scaled distance �=R /R0, a scaled impact

parameter �=b /R0, and a scaled linear distance �=	�2−�2

with R0=	a /�E, Eq. �12� transforms into

i

�

d

d�
A− = +

1

�2 + �2A− +
1

2
A+,

i

�

d

d�
A+ = −

1

�2 + �2A+ +
1

2
A−, �14�

where �=�ER0 /��.
For the calculation of the transition probability for a

single passage of the coupling region, Eq. �14� should be
integrated from small � where 1 /�2�1 �region of the linear
Stark effect� to large � where 1 /�21 �region of the qua-
dratic Stark effect�, with the initial conditions

�A−����small � = 1, �A+����small � = 0. �15�

Then, the transition probability is equal to

P = �1/2���A+����large � − �A−����large ��2. �16�

In this way, the transition probability P will depend on the
two parameters � and �, i.e., P= P�� ,��. The transition prob-
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ability Pj,m introduced above is recovered from the function
P�� ,�� as Pj,m�E ,b�= P�� j,m ,� j,m� with � j,m defined by Eqs.
�10� and �11� and � j,m=b /Rj,m

�r� .
Two limiting expressions for P= P�� ,�� are known. In

the sudden limit, for �→0, the transition probability P
= Psudd can be calculated as the square of the projection of

the �j ,�� state onto the �j ,�̃� state which yields Psudd=1 /2.
In the near-adiabatic limit, for ��1, when the transition
probability is exponentially small, it is given by the standard
exponential expression37

Pnear adiab = exp
−
2

�
Im �

tr

tc 	��E�2 + 4a2/R4�t�dt� ,

�17�

where tr is an arbitrary real time and tc is a complex time
which corresponds to the vanishing value of the square root.
When the integral in the exponent is expressed in the re-
duced parameters, Eq. �17� reads as

Pnear adiab��,�� = exp�− 2������ , �18�

���� = Im �
�r

�e 	1 + 4/��2 + �2�2d� . �19�

The limiting values of ���� are

���� = 
1.198 for � = 0

� for � � 1.
� �20�

The function ���� is illustrated in Fig. 4. Also shown is a
simple analytical approximation

���� � ��0��1 + ��/��0��n�1/n

with n=2.9.
As noted above, in general, the transition probability de-

pends on the two parameters: � and �. However, the depen-
dence on the reduced impact parameter � can be neglected if
the probabilities are used for calculations of capture rate co-
efficients under the condition �EE. Indeed, the capture

distance Rc is of the order of 	a /E, while the characteristic
value of the impact parameter, which affects the transition
probability, is of the order of 	a /�E. Since the former is
substantially smaller than the latter, we can simplify the tran-
sition probability P in the range of small �, which is of
interest for the capture, by writing �������0� �see Fig. 4�
such that P�� ,��� P�� ,���=0� P���. The bridging between
the sudden and near-adiabatic limits can be accomplished by
using the analogy to the Rozen–Zener–Demkov model,37

which gives an analytical expression of the transition prob-
ability for arbitrary values of the Massey parameter. In this
way, the transition probability P��� between the near-
adiabatic and sudden limits can be approximated by

Papp��� =
exp�− c��

1 + exp�− c��
, �21�

where c=2��0�=2.396. Figure 5 compares numerically ac-
curate transition probabilities P��� with the approximation in
Eq. �21�.

IV. RATE COEFFICIENTS FOR �-DOUBLING
SPECIFIC CAPTURE IN THE NONADIABATIC REGIME

We now turn to the rate coefficients for capture in indi-
vidual �-doublet states. These will be derived by a generali-
zation of our earlier treatment from Ref. 11. The reduced
partial and total AC capture rate coefficients � j,m

AC, � j
AC �i.e.,

the ratio of the partial rate coefficients to the Langevin cap-
ture rate coefficient kL=2�q		 /��, which were introduced
in Ref. 11, correspond to the sudden transition between the �
components, and are written as

� j,m
AC = A�T��

0

� JdJ

2j + 1
exp�− Uj,m

max�J�/kBT� ,

FIG. 4. Dependence of the factor ���� in Eq. �18� on the reduced impact
parameter � �dotted curve� and its analytical approximation �full curve�. The
dashed and dash-dotted lines correspond to the asymptotics of ���� in
Eq. �20�.

FIG. 5. Nonadiabatic transition probability P��� for intermediate Stark ef-
fect adiabatic channels as a function of the Massey parameter �. The full line
corresponds to the analytical approximation by Eq. �21�, the symbols are
numerically accurate transition probabilities.
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� j
AC = �

m=−j

j

� j,m
AC, �22�

where J is a classical counterpart of the quantum number of
the total angular momentum, and the factor A�T� is repre-
sented as

A�T� =	8kBT

��

��2

�kBT

1

2�q
	�

	
. �23�

The energy Uj,m
max�J� is defined through the properties of the

effective AC potentials, composed of the AC potential and
the classical centrifugal energy,

Uj,m�R,J� =
�2�J + 1/2�2

2�R2 + Vj,m�R� . �24�

The quantity Uj,m
max�J� in Eq. �22� corresponds to the maxi-

mum of the effective potential Uj,m�R ,J� if the latter pos-
sesses a barrier; it is equal to zero if Uj,m�R ,J� is attractive,
and infinity if Uj,m�R ,J� is repulsive. The asymptotic form of
� j,m

AC for temperatures substantially lower or higher than the
characteristic temperature, Tcd=�2m2�D

2 / j2�j+1�2	kB, is ob-
tained from Eqs. �22� and �24� when only cd or cid terms in
the AC potential Vj,m�R�, respectively, are used. One then has

� j,m
AC

= �� j,m
cd =

1

2j + 1
	 2

�	kBT

�m�D

j�j + 1�
��m� , T  Tcd

� j,m
cid =

1

2j + 1
, T � Tcd.�

�25�

In this expression, ��m� is a step function which selects the
partial rate coefficients that correspond to attractive cd inter-
action. The lack of a dependence of the partial Langevin rate
coefficients � j,m

cid on m implies that all potentials with attrac-
tive and repulsive cd terms lead to capture.

We now generalize Eq. �22� by taking into account the
nonadiabatic transitions. The expression for the rate coeffi-
cient � j,m

AC generates two quantities, namely, � j,m
trans, which is

related to the nonadiabatic transition �trans� and � j,m
surv, which

is related to adiabatic survival �surv�. Both quantities require
thermal averaging of the transition/survival probabilities. Ex-
plicitly, we write

� j,m
surv/trans = A�T��

0

� JdJ

2j + 1
�

Uj,m
max�j�

�

Pj,m
surv/trans�E�

�exp�− E/kBT�
dE

kBT
, �26�

where the probabilities Pj,m
surv/trans are related to Pj,m as

Pj,m
surv�E� = 1 − Pj,m�E� ,

Pj,m
trans�E� = Pj,m�E� . �27�

One should note that � j,m
trans+� j,m

surv=� j,m
AC and that, in the sud-

den limit, � j,m
trans=� j,m

surv=� j,m
AC /2. The quantities in Eq. �26� de-

termine the partial �̃ j,m and the total �̃ j,� rate coefficients
from the j ,� states of the �-doublet,

�̃ j,m = 2� j,m
surv + 2� j,−m

trans,

�̃ j,� = �
m

�̃ j,m, �28�

where the allowed values of m are determined by the parity
index � from the adiabatic correlation �=sign�m�. �The fac-
tor 2 at the right hand side of Eq. �28� is due to the fact that
the normalizations of the rate in this and in the earlier paper11

differ; �̃ j,m is defined as the rate per unit population of each
� component, while � j,m was defined as the rate per unit
total population of both � components�. Equation �28� leads
to

�̃ j,� + �̃ j,−� = 2� j
AC. �29�

One, therefore, can observe a splitting of the rate coeffi-
cients, for capture in the rotational state j with �-doubling
effect neglected, into two components which correspond to
capture in the rotational states j ,�= +1 and j ,�=−1 being
separated by the energy spacing �Ej.

Capture for the �-doublet, with arbitrary populations nj,+

and nj,− of its components, can be characterized by an effec-
tive rate coefficient �̃ j

eff as

�̃ j
eff =

�̃ j,+nj,+ + �̃ j,−nj,−

nj,+ + nj,−
. �30�

For thermal populations of the components at �Ej /kBT
1, nj,+�nj,− such that �̃ j

eff�� j. At the lower limit of the
temperature range T�T�, near-adiabatic conditions are at-
tained when �̃ j,−�̃ j,+ such that �̃ j

eff� �̃ j,+ /2. For nonthermal
populations with arbitrary relation between nj,+ and nj,−, �̃ j

eff

can range from �̃ j,+ �when only the lower component is
populated� to �̃ j,− �when only the upper component is popu-
lated�.

Quite general analytical results can be obtained under
the condition that the AC potentials are calculated in the PR
approximation. For instance, the AC PR potentials for �
=1 /2, j=1 /2, where the cq term vanishes, read as11

V1/2,m
PR �R� = −

2m�Dq

3R2 −
q2	PR

2R4 , �31�

where 	PR is the effective PR polarizability, 	PR=	
+ �4 /27��D

2 /B, which is defined through 	, �D �see Eq. �1��,
and the rotational constant B of the diatom.11

The capture rate coefficient �1/2
PR =�1/2,1/2

PR +�1/2,−1/2
PR de-

pends on the temperature through the reduced temperature
�PR=kBT /E

1/2,−1/2
*PR

, E
1/2,−1/2
*PR

=�D
2 /18	PR, and its partial contri-

butions read as

�1/2,1/2
PR ��PR� = 		PR/	�1/	��PR + 1/2� ,

�1/2,−1/2
PR ��PR� = 		PR/	��1/2�erfc�1/	�PR�� , �32�

where erfc�x� is the complementary error function, erfc�x�
= �2 /���x

�exp�−y2�dy. The asymptotic forms of �1/2
PR��PR� are
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�1/2
PR��PR� = 
		PR/�	�PR, �PR  1

		PR/	 , �PR � 1.
� �33�

Note that the high temperature limit ��PR�1� is 		PR /	 and
not unity �that would correspond to the sum of partial con-
tributions of �1/2,1/2 and �1/2,−1/2� since the effective PR po-
larizability 	PR differs from 	.

Beside the trivial scaling factor 		PR /	, the rate coeffi-
cients �̃1/2,+

PR and �̃1/2,−
PR depend on two parameters: the re-

duced temperature �PR and the reduced �-doubling splitting
��= ��E1/2 /E

1/2,−1/2
*PR ��q��D /6�2�. We can then write

�̃1/2,+
PR = 2�1 − P̄��1/2,+1/2

PR + 2P̄�1/2,−1/2
PR ,

�̃1/2,−
PR = 2P̄�1/2,+1/2

PR + 2�1 − P̄��1/2,−1/2
PR . �34�

Here, the mean transition probability P̄ has the expected val-

ues P̄=0 and P̄=1 /2 for the adiabatic and sudden limits,

respectively. For the intermediate case, the quantity P̄ serves
as a means to express the two rate coefficients �̃1/2,+

PR and
�̃1/2,−

PR through the rate coefficients �1/2,1/2
PR and �1/2,−1/2

PR from

the analytical Eq. �32� and P̄= P̄��PR,���. Plots of the func-

tion P̄��PR,��� are shown in Fig. 6 for different values of ��.
The value ��=3.46 refers to the capture of NO�X 2�1/2 , j
=1 /2� by C+ such as discussed in Ref. 11.

V. RATE COEFFICIENTS FOR �-DOUBLING SPECIFIC
CAPTURE IN THE ADIABATIC REGIME

At T�T� and below, capture occurs adiabatically with
respect to transitions between the components of a �-doublet
and, therefore, the rate coefficient can be calculated in the
framework of the AC approximation with AC potentials cal-
culated by taking the �-doubling splitting into account. In
addition, one can use the PR approximation. Therefore, one
can employ Eqs. �3�–�6� for numerical calculations of the
capture rate coefficients �̃ j,m

PR . However, a useful analytical
result can be also be obtained when one neglects the charge-
quadrupole and the effective Langevin interactions against

the intermediate Stark charge-dipole interaction. Although
the leading asymptotic interaction �in the limit R→�� is
dominated by the charge-quadrupole term proportional to
R−3, there might exist a broad range of temperatures, within
which the R−3 interaction term can be neglected in compari-
son to the R−4 term �since the latter contains a large factor
which is inversely proportional to �Ej� unless the dipole
moment of the diatom is anomaly small.

We, therefore, consider a case where at all separations,
the AC PR potentials are well represented by the charge-
permanent dipole �cd� interaction in the intermediate Stark

regime �Eq. �7��. Since �Ṽj,m
cd �R��m�0 are repulsive, the cap-

ture rate coefficients ��̃ j,m
cd �m�0 and �̃ j,−

cd vanish. The capture
rate coefficients �̃ j,m

cd for m�0 are then determined by the
general expression �Eq. �22��,

�̃ j,m
cd = 2A�T��

0

� JdJ

2j + 1
exp�− Ũj,m

cd,max�J�/kBT� . �35�

Here, Ũj,m
cd,max�J� is the maximum of the effective potential

Ũj,m
cd �R,J� = �2�J + 1/2�2/2�R2 + Ṽj,m

cd �R� . �36�

For the cd potential Ṽj,m
cd �R� from Eq. �7�, the centrifugal

barrier Ũj,m
cd,max�J� can be calculated analytically as

Ũj,m
cd,max�J� =

�Ej

2
�1 − 	1 − J4/Jj,m

4 � , �37�

where Jj,m=	2�aj,m /�2. Equation �37� then shows that the
upper integration limit in Eq. �35� is actually J=Jj,m, the
largest relative angular momentum for which

�Ũj,m�R ,J���Ej=0 becomes nonattractive.

When the expression for Ũj,m
cd,max�J� from Eq. �37� is sub-

stituted into Eq. �35� and the integration variable is properly
modified, one finds that �-doubling in the rate coefficient
�̃ j,m

cd manifests itself by the appearance of an m-independent
factor F=F�� j

�� in front of the capture rate coefficient
2� j,m

cd ,� j
� being defined by � j

�=kBT /�Ej. This leads to

�̃ j,m
cd �T� = 2A�T��

0

Jj,m JdJ

2j + 1

�exp
−
�Ej

2kBT
�1 − 	1 − J4/Jj,m

4 ��
= 2� j,m

cd �T� � F�� j
�� , �38�

where � j,m
cd is given by Eq. �25� and the function F=F�� j

�� is
defined as

F�� j
�� = �

0

1

dy exp�− �1/2� j
���1 − 	1 − y2�� . �39�

It is important to note that this function damps the T−1/2

divergence of the rate coefficient � j,m
cd �T� and has the follow-

ing asymptotic forms:

FIG. 6. Mean transition probabilities P̄��PR,��� expressing �̃1/2,+
PR and �̃1/2,−

PR

through �1/2,+1/2
PR and �1/2,−1/2

PR in Eq. �34�. The curves are labeled by the
values of ��. The value ��=3.46 refers to the capture of NO�X 2�1/2 , j
=1 /2� by C+.
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F�� j
�� = 
1, � j

� � 1

	�� j
�, � j

�  1.
� �40�

The function F�� j
�� and some related functions are shown in

Fig. 7.
Since the factor F in Eq. �38� does not depend on m, the

total rate coefficient for capture of a molecule in the lower �
component of the rotational state j at very low temperatures,
�̃ j,+

cd , is related to the total rate coefficient for the rotational
state j with zero �-doublet splitting, � j, in the following
simple way:

�̃ j,+
cd �T� = 2� j

cd�T�F��Ej/kBT� . �41�

Equation �41� possesses the following limits for T��Ej /kB

and T�Ej /kB:

�̃ j,+
cd �T� = 
 2� j

cd�T� for T � �Ej/kB

2� j
cd�T�	�� j

� for T  �Ej/kB.
� �42�

This expression shows that for T��Ej /kB the rate �̃ j,+
cd �T� is

expressed through the adiabatic limit of the rate constant
� j

cd�T�. In the opposite case, for T�Ej /kB, the rate coeffi-
cient �̃ j,+

cd �T�=2� j
cd�T�	�kBT /�Ej coincides with the scaled

effective Langevin capture rate coefficient

��̃ j,+
cd �T��kBT�Ej

� � �̃ j,+
cd-L = 		̃/	 , �43�

where the factor 	̃ is expressed via the effective partial po-
larizabilities 	̃ j,m and ultimately through the dipole moment
and the �-doubling splitting,

		̃ =
1

2j + 1�
m

		̃ j,m,

	̃ j,m = 2�D
2 m2�2/j2�j + 1�2�Ej . �44�

Of course, the Langevin capture rate coefficient �̃ j,+
cd-L coin-

cides with the total capture rate coefficient expressed through
the partial capture rate coefficient �̃ j,m

cd-L,�̃ j,+
cd-L=�m�̃ j,m

cd-L,
which, in turn, are calculated for the effective Langevin

attractive potentials Ṽj,m
cd-L�R�= �Ṽj,m

cd �R���Ej�aj,m/R2 =−q2	̃ j,m /
2R4.

Since within the above treatment, the relative motion of
the partners is described classically even in the low tempera-
tures, � j

�1, one has to ensure that the contribution to the
integral comes from J-values that are notably larger than
unity. Indeed, inspection of the integrand in Eq. �39�� for
� j

�1 shows that this condition is fulfilled provided that
�� j

��1/4Jj,m�1. This inequality can be reformulated as the
condition that the temperature T is substantially higher than
the characteristic ultralow temperature Tj,m

ULT for each indi-
vidual capture channel given by Tj,m

ULT=�4 /�2q2	̃ j,m. The lat-
ter condition guaranties the good performance of the classi-
cal approximation for calculating the capture rate coefficient
with the potentials of Eq. �36�. Assuming that the condition
T�Tj,m

ULT is fulfilled for all capture channels, we see that the
ratio �̃ j,+

cd / �̃ j
cd-L depends only on a single variable � j

�

=kBT /�Ej, and can be represented as a universal function

�̃ j,+
cd /�̃ j,+

cd−L = ��� j
�� ,

��� j
�� =

1

	�� j
�

F�� j
�� . �45�

The rate coefficient �̃ j,+
cd-L is expected to provide the dominant

contribution to the accurate rate coefficient �̃ j,+
PR in the limit

kBT�Ej. In this limit, the ratio �̃ j,+
PR / �̃ j,+

cd-L differs from unity
by a term of the order of 	PR / 	̃ which normally is very small
�with 	̃ from Eq. �44� and 	PR from Eq. �31��. The difference
between �̃ j,+

PR and �̃ j,+
cd is due to the neglect of the effective

Langevin interaction, the term with the polarizability 	PR,
and the charge-quadrupole interaction. The effect of the
former can be easily accounted for while the latter cannot be
considered in a simple way, and one has to resort to a general
treatment for the potential of the form of Eq. �8� �see Ref.
13�. However, due to large coefficients of the R−4 term, the
effect of the R−3 term will show up only at extremely low
temperatures where the hyperfine structure cannot be
ignored.

On the basis of the present discussion, one can therefore
recommend the following general expression for the capture
rate coefficients across the whole temperature range �pro-
vided that the relative motion of the partners is classical and
hyperfine interaction is neglected�:

�̃ j,+
PR�T� � � j

PR�T�F�� j
�� . �46�

The satisfactory performance of this formula across a wide
temperature range, from TT� to T�T�, is guaranteed by
the fact that, when damping is important, the capture is
dominated by the cd interaction and, when the PR Langevin
correction becomes noticeable, the damping is not important.

VI. DISCUSSION AND CONCLUSION

The �-doubling specificity of capture rate coefficients is
the entrance-channel counterpart of the �-doubling propen-
sity in the formation of diatomic products in the exit chan-
nels of decomposing statistical complexes. The latter process
has been thoroughly studied by the statistical-closed-coupled
method15,16 as applied to the calculation of state-resolved

FIG. 7. Damping function F����, Eq. �39� �curve 1�, undamped function
	��� �curve 2�, and its damped counterpart �����, Eq. �45� �curve 3� as
functions of ��=kBT /�E.
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cross sections and rate coefficients for the formation of
OH�2�� and OD�2�� �see Refs. 17 and 18, respectively�.
The method employed in these papers takes into account all
electronic and spin-orbit couplings in the exit channels, and
the propensity toward the population of the �-doubling com-
ponents, presumably created in the complex, was found to
survive “the myriad of crossings with the repulsive potentials
which all coalesce as the fragments separate.”18 The interpre-
tation of the origin of the propensity suggested in Refs. 38
and 39 �and modified later17� are based on the consideration
of the symmetry of the orbital of the bond to be broken with
respect to the plane of rotation of the free fragment. These
considerations adopt a picture, which neglects the mixing of
the spatial components of the electronic functions of differ-
ent symmetry under the action of spin-orbit interaction.40

Therefore, they are applicable to molecules with Hund’s cou-
pling case b, such as this is approximately the case for
OH�X 2��, but they do not apply to Hund’s coupling case a
which is relevant for NO�X 2��. We note in passing that the
lowering of the asymmetry of the charge distribution in a
rotating diatomic molecule, when the a diatom passes from
the coupling case b to a is well-documented phenomenon
�see the “Application 15” of Ref. 31 for a comparison of OH
with NO�.

Contrary to the full statistical-closed-coupled method,
the approach in the present work is considerably less de-
manding since it takes into account simplifications that arise
in the low-energy regime of the capture of the molecule in
the case of Hund’s coupling case a. These features allow one
to consider the long-range interaction for a single electronic
PES, neglect the coupling between the AC states that corre-
late with different rotational quantum numbers j, and treat
the relative motion classically. The only coupling included in
the treatment is the nonadiabatic interaction between AC
states that arise from two �-components belonging to the
same j, and this coupling is described in the common trajec-
tory approximation. It is important that when the condition
of the common trajectory approximation ��Ej kBT� is vio-
lated with decreasing temperature, the nonadiabatic interac-
tion can already be ignored, and different trajectories can be
assigned to different adiabatic potentials. Quantum effects in
the adiabatic relative motion of partners are expected to
show up at even lower temperatures.

By reversibility arguments, the capture probability in the
entrance channels can be rewritten as a decay probability of
the complex into the respective exit channel j ,m at a given
total energy and total angular momentum. Here, the decay
probability is the probability of leaving the potential well
across a certain effective AC potential multiplied with the
probability of adiabatic survival or nonadiabatic transition on
the way to the final state j ,�. If one neglects the small energy
correction �Ej, the �-doubling propensity within two states,
j ,� and j ,��, in an exit channel j ,m is governed only by the
nonadiabatic transition probability; the propensity disappears
when the final translational energy is large enough and the
transition probability Pj,m�E� reaches its sudden limit,
Pj,m�E�= Pj,m

sudd�E�=1 /2. We thus see that, for two final states
�= �1, the �-doubling propensity is created at very large
separations as the result of the dynamic nonadiabatic cou-

pling between the AC states converging to different
�-doubling components. This illustrates the difference in the
mechanisms of the �-doubling propensity for the two differ-
ent Hund coupling cases and for two different regimes of the
final translational energy.

Returning to the �-doubling specificity in state-resolved
capture rate coefficients, we reiterate two basic features that
allowed us to draw a general conclusion. First, the nonadia-
batic transitions between �-doubling AC states occurs at col-
lision energies E which are substantially larger than the
�-doubling splitting �Ej in a free molecule. This is due to
the magnitude of the parameter ��Dm� /�2j�j+1� which
normally is quite large �if the dipole moment is not abnor-
mally small and j is not too large� and which ensures a
relatively large value of the Massey parameter even under
the condition �Ej E. The same condition permits the
common-trajectory description of the nonadiabatic dynamics
in the region of an intermediate Stark effect for the charge-
dipole interaction, and it ensures near-adiabatic capture in
the region of potential barriers if these are determined by an
interplay between linear Stark effect for cd interaction and
other terms of the potential. With a decrease of E, the
common-trajectory description becomes progressively less
adequate but the transition probability becomes so low that
one can neglect it altogether and treat the capture as a com-
pletely adiabatic event. Second, in the regime of adiabatic
capture, an adequate description of the interaction is pro-
vided by the perturbed rotor potentials with an intermediate
Stark effect for the charge-dipole term, other terms playing a
minor role. The applicability of the PR approximation for the
determination of potential barriers is guaranteed by the fact
that �-doubling splitting �Ej is much smaller than the en-
ergy of the rotational transition. At lower temperatures, cap-
ture occurs in the regime of quadratic Stark effect exceeding
other terms. The combination of these results allowed us to
suggest an approximate expression for the rate coefficients
which describes nonadiabatic dynamics over the wide tem-
perature ranges and corresponds to capture in AC potentials
in an intermediate Stark effect regime.
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APPENDIX: GLOSSARY OF ABBREVIATIONS USED
IN THIS PAPER

�i� AC stands for adiabatic channel, PR stands for per-
turbed rotor, cd stands for charge-permanent dipole,
cid stands for charge-induced dipole, cq stands for
charge-quadrupole, and L stands for Langevin.

�ii� � j,m
AC, � j

AC are the reduced partial �j ,m-specific� and
total �j-specific� AC capture rate coefficients calcu-
lated with the �-doubling effect ignored �i.e., corre-
sponding to the sudden transition between the � com-
ponents�. With AC replaced by PR, the rate
coefficients � j,m

PR , � j
PR corresponds to AC PR poten-
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tials. With AC replaced by cd, the rate coefficients
� j,m

cd , � j
cd correspond to the cd interaction in the linear

Stark effect regime.
�iii� � j,m

surv/trans are the reduced auxiliary capture rate coeffi-
cients corresponding to survival on a j ,m AC poten-
tial and transition between j ,m→ j ,−m AC potentials
for the motion across the nonadiabaticity region.

�iv� �̃ j,m, �̃ j,� are the reduced partial �j ,m-specific� and
total �j ,�-specific� rate coefficients for the capture in
the linear Stark regime with account taken for nona-
diabatic transitions between AC potentials.

�v� �̃ j,m
PR , �̃ j,�

PR are reduced partial �j ,m-specific� and total
�j ,�-specific� AC PR capture rate coefficients calcu-
lated with �-doubling effect taken into account. With
PR replaced by cd, the rate coefficients �̃ j,m

cd , �̃ j,�
cd cor-

respond to the cd interaction in the intermediate Stark
effect regime. With PR replaced by cd-L, the rate co-
efficients �̃ j,m

cd-L, �̃ j,�
cd-L correspond to the cd interaction

in the quadratic Stark effect regime where the AC PR
potentials are represented by an effective Langevin-
type �L� terms.
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