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Abstract    

 Following our general approach to Λ-doubling specificity in the capture of 

dipolar molecules by ions (M. Auzinsh, E. I. Dashevskaya, I. Litvin, E. E. Nikitin and J. 

Troe, J. Chem. Phys. 128, 184304 (2008)), we calculate rate coefficients for the title 

process in the temperature range K23 1010 <<− T . Three regimes are considered: i) 

nonadiabatic capture in a regime corresponding to a linear Stark effect of NO in the 

field of the incoming ion with respect to the Λ-doubling components ( K21 1010 <<− T ), 

ii) adiabatic capture in the regime of an intermediate Stark effect ( K13 1010 −− << T ), 

iii) adiabatic capture in the limit of very low temperatures ( K310−<<T ) in the regime 

of a quadratic Stark effect with respect to the Λ-doubling and hyperfine components. 

The results predict a high specificity of the capture rates with respect to the Λ-doubling 

states even under conditions when the collision energy of the partners strongly exceeds 

the Λ-doubling splitting.   
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1. Introduction     

There is a growing interest in the dynamic properties of elementary chemical 

reaction at ultralow temperatures. On the one hand, temperatures in the range 10-20 K 

are relevant for interstellar molecular clouds, i.e. for astrochemical applications.1-3 On 

the other hand, efficient cooling techniques for atoms and molecules 4-9 open an access 

to chemical reactions under sub-Kelvin laboratory conditions. 

At ultralow temperatures, primarily barrierless processes are important which 

are initiated by capture in the long-range part of the interaction potential. Under these 

conditions, a variety of specific quantum effects may become apparent which would be 

averaged out at high temperatures. In a series of articles such as Ref. 10-14 we have 

investigated translational and rotational quantum effects of the reactants. 

The present work considers specific low temperature quantum effects in the 

capture of diatomic molecules by ions, choosing the capture of NO(X2Π1/2) by C+ ions 

as a representative example. It builds on previous theoretical work like Ref. 15-17, and, 

in particular, on Ref. 18 in which a general discussion of nonadiabatic transitions 

between Λ-doubling states during capture process was presented. 

The rate coefficient of the capture of NO(X2Π1/2) by C+ at low temperatures was 

measured in Ref. 4 at the translational temperature K6.0=T . Initially, it was 

interpreted in the framework of a simple model that only assumed charge-permanent 

dipole interaction. Later it was realized that at this temperature the capture is effected 

also by the charge-induced dipole interaction.15,16 The theoretical value of the capture 

rate coefficient, calculated for the ground rotational state of NO(X2Π1/2, 2/1=j ) in the 

adiabatic channel (AC) treatment of first-order charge-permanent dipole and charge-

induced dipole interactions, was found to agree with the experimental one within 

experimental error.15 Later work17 revealed that the form of the interaction adopted in 

Ref. 15 and 16 for the state 2/1=j  provides only a poor approximation to an accurate 

AC potential, and that the latter is reasonably well represented by a more accurate 

perturbed rotor (PR) potential which includes, in addition to the first-order charge-

permanent dipole and the charge-induced dipole interactions, also the second-order 

charge-permanent dipole interaction. This finding cast doubts on the earlier 

interpretation of the experiment. Indeed, it was found that the theoretical rate coefficient 

agrees with the experimental one only if the former is calculated for an average of  
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rotationally state-specific rate coefficients at a rotational temperature of about 20 K, a 

value also suggested in Ref. 4. It appears that state-specific rate coefficients for the 

capture of NO(X2Π1/2,,j) by C+  such as calculated in Ref. 17 now provide enough 

information for the interpretation of more detailed experiments which are not 

necessarily related to thermal translational and rotational ensembles. One of the possible 

experiments could be the measurement of a capture rate, or an exothermic charge 

transfer event, with the participation of NO(X2Π1/2) molecule in a specific rotational and 

Λ-doubling state. The feasibility of such an experiment is evident from recent studies of 

the inelastic scattering of NO and OH in selected Λ-doubling components of the ground 

rotational state on noble gases.6-9 

 In line with the general approach presented in Ref. 18, the aim of the present 

work is the calculation of Λ-doubling state-specific capture rate coefficients for 

NO(X2Π1/2, j,ε=±1) + C+. Low-energy (temperature) collisions for 2/1=j , 2/3=j and 

2/5=j  are considered and hyperfine (HF) structure effects are as well discussed for 

very low energies (temperatures). Section 2 describes some general features of the 

capture dynamics of the title process. In Section 3, the nonadiabatic (with respect to Λ-

doubling states) capture of NO in the electrical field of the C+ ion, in a regime 

corresponding to linear Stark effect, for 2/1=j , 2/3=j and 2/5=j  states is 

discussed. Section 4 is devoted to adiabatic capture in a regime corresponding to 

intermediate Stark effect. Section 5 presents a qualitative discussion of the influence of 

hyperfine interaction in the ground state of NO with 1,2/1 +=ε=j  (corresponding to a 

regime of quadratic Stark effect). Section 6 concludes the article.  

 

 

2. Qualitative aspects of the interaction betweem NO(X2Π1/2) in low rotational 

states and an ion.  

The states of a free, rigid NO molecule in the electronic state X2Π1/2 within 

Hund’s coupling case a, that belong to the manifold specified by the intrinsic angular 

momentum quantum number j, are two Λ-doubling components characterized by 

different molecular parity index 1±=ε  (or the parity 2/1)1( −−ε= jp ) and the hyperfine 

(HF) states characterized by the total angular momentum quantum number F and the 

nuclear spin quantum number I=1. The energy levels of the free rotor )1( += jBjE j  
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then are split into several components with the Λ-doubling and HF energy increments 
Λ
εΔ ,jE  and HF

FIjE ,,,εΔ , see e.g. Ref. 19:  
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Eq.(1) contains the five molecular parameters, dKDB e ,,,, 2/1 eff ρ  which are listed in 

Table 1.  

The interaction of the NO molecule with an ion at large distances, which 

determines the capture at low energies, is composed of charge-permanent dipole, 

charge-permanent quadrupole and charge-induced dipole terms. As discussed in Ref. 17, 

a simplified representation of this interaction contains three parameters, the permanent 

dipole and quadrupole moments, Dμ  and Q , and the isotropic polarizability α , such as 

also listed in Table 1, and is formulated as 
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The interaction potential of Eq.(2) generates a set of adiabatic channel (AC) potentials 

)(, RV mj , or their perturbed rotor (PR) counterparts )(PR
, RV mj . The latter are constructed 

in such a way that they include the terms with the same powers of R as in Eq.(2), i.e. 

they incorporate first-order charge-permanent dipole interaction (cd), first-order charge-

permanent quadrupole interaction (cq) and the Langevin (L) interaction (the sum of the 

charge-induced dipole interaction, cid, and the second-order charge-permanent dipole 

interaction).  

 We consider the following hierarchy of approximations for the AC potentials, 

which will be used in different temperature ranges. If Λ-doubling effect and hyperfine 

interaction are ignored, the AC potentials (or their PR counterparts) are written as 

)(, RV mj  (or )(PR
, RV mj ). The calculation of these quantities is described in Ref. 17. If the 
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Λ-doubling effect is taken into account but the HF interaction is ignored, the AC 

potentials (or their PR counterparts) are written as )(~
, RV mj  (or )(~PR

, RV mj ). As explained 

in Ref. 18, the quantities )(~
, RV mj  (and )(~PR

, RV mj ) can be recovered from )(, RV mj  (and 

)(PR
, RV mj  ) by a simple procedure. For instance, an expression for )(~

, RV mj  reads  
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where ΛΔ jE  is from Eq.(1) and )(sign msm = . Note that the dependence of the 

)(~
, RV mj on the sign of m enters only through ms . The potentials )(, RV mj  (or )(~

, RV mj ) 

are formulated relative to the asymptotic energy levels of the free rotor with quantum 

number j (or ε,j ). In the latter case, the asymptotic quantum number ε  (the parity 

index) is related to the AC quantum number m through ms=ε . We note in passing that 

the PR counterpart of Eq.(3), in the language of the charge-permanent dipole interaction, 

corresponds to the quadratic Stark effect of NO in the field of C+ with respect to the 

coupling between different rotational states (also called the weak-field approximation). 

This, however, does not preclude the appearance of an intermediate Stark effect with 

respect to the coupling between different Λ-doubling components of the same j-state (as 

expressed by the square root in Eq.(3)), see Section 4. Limiting forms of this 

intermediate Stark effect, which are also discussed in this paper, are the linear (Section 

3) and quadratic (Section 5) Stark effects (with respect to the coupling between different 

Λ-doubling components of the same j-state).  

If both the Λ-doubling effect and HF interaction are taken into account, the 

respective AC potentials MFjV ,,,

~~
ε  are obtained by diagonalization of the matrix V

~~  that 

consists of the sum of the matrix V   corresponding to Eq.(2) and the matrix of the Λ-

doubling and HF interactions. The latter matrix is diagonal in the 

MFj ,,,ε representation with the elements given by Eq.(1).  

 The potentials )(~
, RV mj  and )(~PR

, RV mj  were shown in Figs. 1–3 of Ref. 18. The 

inspection of these figures indicates a qualitatively different pattern of the AC and PR 

potentials that is due to the ever-increasing role of the charge-quadrupole interaction in 
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comparison to the decrease of the first-order charge-permanent dipole interaction, see 

Fig. 1 of the present article. The following remarks about the applicability of the PR 

approximation to the calculation of low-temperature rate coefficients for the capture of 

NO(X2Π1/2, j,ε) by C+ , therefore, should be noted:  

i) For the state 2/1=j , the PR approximation is applicable for K5.0<T  only when 

the passage over the potential barrier for the AC state 2/1,2/1 −== mj  can be ignored. 

Adiabatic capture then is possible from the lower Λ-component only.  

ii) For the state 2/3=j , the PR approximation is applicable for K5.0<T  only if the 

AC channel 2/1,2/3 −== mj  can be considered as closed (though it does not look like 

a closed channel in the region of applicability of the PR approximation). Adiabatic 

capture is possible from the lower Λ-component only, when one ignores the incorrect 

behavior of the PR AC potential for 2/1,2/3 −== mj  in the indicated energy range.  

iii) For the state 2/5=j , the PR approximation can be used only below 0.1 K when the 

incorrect behavior of the PR AC potentials does not affect the capture. A novel feature 

here is the appearance of the attractive AC potential for the 2/1,2/5 −== mj  state.  

The above properties of the AC potentials and their PR counterparts are discussed in 

detail in the following sections. 

 

 

3. Nonadiabatic capture of NO(X2Π1/2,j,ε) by C+ at Λ>> jTT  in a regime 

corresponding to a linear Stark effect  

 We first consider capture at temperatures T that noticeably exceed the 

characteristic temperatures BkET jj
ΛΛ Δ=  of the Λ-doubling splitting. In this range, the 

passage of the collision partners over the potential barriers occurs under conditions 

where the effective AC potentials between the molecule and the ion correspond to linear 

Stark effect. However, during their mutual approach to the barriers, the partners pass 

through a region where the quadratic Stark effect at large separations changes into linear 

Stark effect at the barriers. Nonadiabatic transitions between the AC potentials PR
mjV ,

~  and 

PR
mjV −,

~  are possible in this region, and the nonadiabatic transition probability mjP ,  should 

be found from the solution of two coupled equations containing the amplitudes of the 
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AC,mj  and AC, mj −  states. Under the condition when the Λ-doubling spacing jEΔ  is 

much smaller than the collision energy E , these equations can be formulated in the 

“impact parameter approximation” (i.e. in the common trajectory approximation for a 

rectilinear trajectory with a fixed velocity v ) of relative motion.18 The important feature 

of this approximation is that the probability )(, EP mj  depends on a single parameter only, 

the Massey parameter, and, as a consequence, it can be recovered from the probability 

)(2/1,2/1 EP  by the scaling:    
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The energy dependence of )(, EP mj , for mj,  states with 2/5,2/3,2/1=j , is shown in 

Fig. 2 (only positive m are shown for the pairs mm −, ). In order to demonstrate the 

validity of the common trajectory approximation, Fig. 2 also shows the values of ΛΔ jE  

on the energy axis. The hatched regions, for the states indicated, correspond to the 

passage from the adiabatic regime (to the left of the regions) to the sudden regime (to 

the right of the regions) with respect to the transition between the Λ-doubling states. 

The inspection of Fig. 2 shows that, for the states under discussion, nonadiabatic capture 

occurs within a temperature range between tenths and tens K, and the common 

trajectory approximation introduced in Ref. 18 is adequate for the calculation of 

nonadiabatic transition probabilities (this approximation breaks down only when the 

capture is essentially adiabatic, and the transition probability is negligibly small and, 

therefore, can be neglected).    

Reduced Λ-doubling specific rate coefficients, εχ ,
~

j , for 25,23,21=j  are  

calculated following the procedure described in Ref. 18. As before, we express the 

capture rate coefficients captk  in reduced form 
Lcapt kk=χ relative to the Langevin rate 

coefficient μαπ= qk 2L . Explicitly, the εχ ,
~

j  are represented as a sum of partial rate 

coefficients mj ,
~χ  :  
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∑χ=χ ε
m

mjj ,,
~~           (5) 

 

where the allowed values of m  at the r.h.s. are determined by the parity index ε  from 

the adiabatic correlation )(sign m=ε , implying that m  are positive for the lower Λ-

doubling component with 1+=ε  and negative for the upper one with 1−=ε . In turn, 

the mj ,
~χ  are expressed through survival (surv) and transition (trans) rate coefficients 

surv/trans
,mjχ  which are calculated using the probabilities surv/trans

,mjP  (which account for the Λ-

doubling effect) and the effective AC potentials ),(, JRU mj  (that ignore the Λ-doubling 

effect). The above is concisely expressed through the following set of equations (see 

Ref. 18 for details)    
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The energy )(max
, JU mj  entering in Eq.(7) is defined through the properties of the effective 

AC potentials, composed of the AC potential and the classical centrifugal energy  
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Explicitly, )(max
, JU mj  in Eq.(7) corresponds to the maximum of the effective potential 

),(, JRU mj  from Eq.(10) if the latter possesses a barrier; it is equal to zero, if ),(, JRU mj  

is attractive, and it is infinity, if ),(, JRU mj  is repulsive.    

 In particular, for the states with 2/1=j  there exists a one-to-one 

correspondence between ε  and m , m2=ε , such that the expression for εχ ,2/1
~  assumes 

the form  
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The results of accurate calculations of εχ ,2/1
~  are presented in Fig. 3, along with the 

effective rate coefficient eff
2/1

~χ  for the capture from thermally populated Λ-components, 

and the capture rate coefficient AC
2/1χ  calculated earlier neglecting Λ-doubling effects.17  

These are expressed as  
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As noted in Ref. 17, the accurate rate coefficients below 10 K are well approximated by 

their PR counterparts calculated with PR AC potentials given by 
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When this expression for the potentials is complemented by the approximate analytical 

expression for 2/1,2/1)(EP ,  
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with the numerical coefficient 396.2=c  and ( ) 62.2532~ 212
21,21 == hqJ Dμμ from Ref. 

18, the calculation of PR
,2/1

~
εχ  becomes quite easy. In particular, as follows from Fig. 2, 

the capture below 1 K occurs adiabatically with respect to the Λ-doubling states and, 

therefore, adia
,2/1,2/1

~~
εε χ=χ  can be expressed through the partial rate coefficients m,2/1χ  in 

which Λ-doubling is ignored. Since the latter are well approximated by their PR 

counterparts and represented analytically,18 for instance, over the range 

K1.02/1 <<<Λ TT  we obtain the following expression for adia
,2/1

~
+χ ,  
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Towards the high-temperature side of the graphs in Fig.3, the quantities eff
2/1

~χ  and PR
1/2χ  

level off at a temperature of about 10 K which indicates that the capture mainly occurs 

when the attractive potential is proportional to 4−R . This potential differs from the ion-

induced dipole potential 42 2/ Rq α−  because it also contains second-order corrections 

from the charge-permanent dipole interaction. The leveling-off then occurs at values 

which are higher than the true high-temperature limit of unity. At the low-temperature 

side, eff
2/1

~χ  and AC
1/2χ  slightly deviate from each other due to the thermal population factor 

)exp( BTkE j
ΛΔ− . The small difference between eff

2/1
~χ  and AC

2/1χ  , of course, does not 

imply that the capture is close to the sudden limit.  

 For other states ( 2/5,2/3=j ), the PR approximation is only applicable at 

substantially lower temperatures, and the calculation of εχ ,2/3
~  and εχ ,2/5

~  should be 

based on accurate AC potentials. Figures 4 and 5 present graphs of εχ ,
~

j  for the 

temperature range 0.1<T<100 K, such as calculated with accurate AC potentials 

)(, RV mj  and accurate transition probabilities. Also shown are AC
jχ  and the effective rate 
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coefficients eff~
jχ  that are defined similar to Eq.(12). Compared to j=1/2, a qualitatively 

new feature for j=3/2 is the passage of the rate coefficients through minima. This is due 

to the interplay between a weaker charge-dipole interaction and the charge-quadrupole 

interaction which is absent for j=1/2. An even more drastic difference is observed when 

one compares the cases j=3/2 and j=5/2. In the latter case, due to the relatively larger 

effect of the charge-quadrupole interaction, the capture from the upper Λ-component 

becomes possible at lower temperatures. The common important feature for all three 

cases is that, at temperatures below 1 K which is still much higher than the 

characteristic temperature for the Λ-doubling splitting, the capture from individual Λ-

doubling states occurs adiabatically. This allows one to treat the capture below 1 K 

within the standard AC approach, using AC potentials that explicitly take into account 

the Λ-doubling splitting.  

 

 

4. Adiabatic capture of NO(X2Π1/2,j,ε) by C+ in a regime corresponding to an 

intermediate Stark effect  

 In a regime corresponding to an intermediate Stark effect, capture occurs under 

adiabatic conditions. It then follows that for T<0.1 K and j=1/2 and 3/2, capture occurs 

only from the lower Λ-component ( 1+=ε ) through the AC channels 2/1,2/1
~V  and 

2/3,2/32/1,2/3
~  ,~ VV , respectively, while, for j=5/2, beside the capture channels with 

2/5,2/3,2/1=m  correlating with 1+=ε  state, there exists a channel with 2/1−=m  

that correlates with the upper Λ-component ( 1−=ε ). For K1.0<T , one can use PR 

potentials )(~
, RV mj  which are derived from Eq.(3). The explicit form of these potential is    
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The capture rate coefficient for the AC PR potential in the adiabatic regime then 

assumes the standard form. Explicitly, εχ ,
~

j  are represented as a sum of partial rate 

coefficients mj ,
~χ , see Eq. (5), and the latter are identified with partial adiabatic capture 

rate coefficients  
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Here )(~ maxPR
, JU mj  is the maximum of the effective potential  
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Again we start with the case j=1/2, since it is simplest because the first-order charge-

quadrupole interaction vanishes. Then the attractive potential PR
2/1,2/1

~V  collapses into its 

simplified version  
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As argued in Ref. 18, the rate coefficient for capture in the field of the potential of 

Eq.(22) can be related to PR
1/2,χ +  through a damping function )/( 2/1 TTF Λ , i.e.   
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)()(χ2)(χ~)(χ~ 2/1
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appPR,
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,2/1 TTFTTT Λ

++ =≈     ` (23) 

 

where )(PR
2/1,2/1 Tχ is defined by Eq.(15) and  
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The function )/( 2/1 TTF Λ  has the asymptotic behavior  
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which damps the 2/1−T  divergence of PR
2/1,2/1χ  (arising from its cd contribution) and 

brings the appPR,
,2/1

~
+χ  rate to a constant limit at very low temperatures when Λ<< 2/1TT :  

 
Λ

<<+ Δ==
Λ 2/1
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As discussed in Ref. 18, the approximate expression 
Λ<<+χ

2/1
)(~ appPR,

,2/1 TT
T  differs from the 

accurate one 
Λ<<+χ

2/1
)(~PR

,2/1 TT
T  by a relative correction αα ~2/PR  which is small unless the 

dipole moment is anomalously low.  

Fig. 6 shows plots of the rate coefficients PR
,2/1

~
+χ  as well as the approximate 

expressions appPR,
,2/1

~
+χ and eff PR,

2/1
~χ . For comparison, plots of extrapolated values of PR,

2/1,2/1χ  

and effPR,
2/1χ  are also shown. At the r. h. s. of this figure, the damping is negligible and the 

graphs coalesce to two filled circles that correspond to those at the l. h. s. of Fig. 3. At 

the l. h. s. of Fig. 6, both PR
2/1,2/1χ  and effPR,

2/1χ  diverge as 2/1−T  while PR
,2/1

~
+χ  and effPR,

2/1
~χ  

tend to a limit that approximately corresponds to αα~ . We note also that the 

approximation of Eq.(23) performs quite satisfactorily. 
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 For higher values of j, the capture rate coefficients were calculated using the full 

AC PR potentials from Eqs.(16)–(19). The comparison of the graphs presented in Fig. 7 

shows that PR
,2/3

~
+χ  is noticeably lower than PR

,2/1
~

+χ . This is ascribed to a much weaker 

charge-dipole interaction which arises from two effects: the smaller value of the dipole 

moment in the state j=3/2, and the stronger suppression of the cd interaction in the 

regime of the intermediate Stark effect (because of the larger value of the Λ-doubling 

splitting). These effects become even more pronounced for j=5/2. A new feature 

appears here, the capture from the upper component of the Λ-doublet. The nonzero 

value of PR
,2/5

~
−χ  is the result of the competition between the attractive first-order charge-

quadrupole interaction and the repulsive charge-permanent dipole interaction in the 

intermediate Stark effect regime. A noticeable negative temperature dependence of 
PR

,2/5
~

−χ  signals the prevailing influence of the charge-quadrupole interaction that 

manifests itself in the incipient 6/1−T  divergence of the classical rate which is quenched 

in the quantum regime, see Section 5.    

 

 

5. Adiabatic capture of NO(X2Π1/2,j=1/2) by C+ in a regime corresponding to a 

quadratic Stark effect. The effect of the HF interaction.    

 The calculation of the capture rate coefficients in the previous sections ignored 

the HF structure. However, when the capture occurs at ultra low temperatures, the 

calculation of the rate coefficients should be based on PR AC potentials that include 

both the Λ-doubling and the HF interaction. These potentials, MFjV ,,,

~~
ε , can be found by 

numerical diagonalization of a matrix with diagonal elements HF
FIjj EE ,,,, ε

Λ
ε Δ+Δ  and off-

diagonal elements derived from the matrix )(PR
, RV mj  by transforming it from the 

IMImj ,,,  representation to the MFIj ,,,  representation20 where 1=I  is the total 

nuclear spin (that coincides with the nuclear spin of the nitrogen), IM  is its projection 

onto the collision axis, F is the total angular momentum of NO ( IjF += ) and M  is its 

projection onto the collision axis. We illustrate the general pattern of AC potentials for 

the case 2/1=j  since in this case the HF structure is rather simple (due to the condition 

1=< Ij , F  assumes only two values, 1/2 and 3/2) and the charge-quadrupole 
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interaction vanishes. We also replace the matrix PRV  by cdV  since the charge-dipole 

interaction makes the largest contribution and we drop the subscripts j  and I  which 

are the same ( )1,2/1 == Ij  in all equations below.  

 Figures 8 and 9 show plots of the scaled CD AC potentials Λ
εε Δ=υ 2/1,,,,

~~ EV MFMF  

vs. the scaled CD interaction energy 2
2/1 REq D

ΛΔμ=η  in two regions. Fig. 8 covers the 

range from free fragments ( 0=η ) to the middle of the intermediate Stark effect region 

for Λ-doubling states ( 6=η ). Interesting features of Fig. 8 are the comparison of the 

accurate AC potentials MF ,,ευ  with their low-energy counterpart (the second order Stark 

effect for HF states) at the weak-interaction side ( 1<η ), and the behavior of the 

potentials MF ,,ευ  at the medium-interaction side ( 4≈η ) (full lines). At the weak 

interaction side, the AC cd potentials are given by general expressions from second-

order perturbation theory21 with respect to Λ-doubling and HF spacing, yielding a 

Langevin-type interaction of the form 

 

4
,,,,

2
L-cd
,,, 2

~~
)(

~~
R

q
RV MFIj

F,MIj
ε

ε

α
−=        (27) 

 

[ ]
( )

( )( )( )( )( )
( )

( )( )( )( )( )
( )  

)12)(32()1(
112)1(

)12)(12(
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)1()1()1(α~

α~α
~~

2
,,ε,1,,ε,

22
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2
,,ε,1,,ε,

22
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22
,,ε,,,ε,

22
2/1

,,,,,,,,

⎪⎭

⎪
⎬
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−++++−+−+++−+Δ

+

+
−+−

−++−++−+++−Δ
+

+
⎪⎩

⎪
⎨
⎧

+−
+−+++Δ

=

==

±+

Λ

±−

Λ

±

Λ

FFFEE
IFjIjFIFjIjFMFE

FFFEE
IFjIjFIFjIjFMFE

FFEE
IIFFjjME

G

FIjFIj

FIjFIj

FIjFIj

MFIjMFIj

m

m

m

εε

 (28) 

 

where one should put 1,2/1 == Ij . If all energy differences in the denominators of 

Eq.(28) are equal to ΛΔ 2/1E , one finds that all G  coefficients are equal to either 1 or –1, 

i.e. we return to the case of vanishing HF interaction (dotted lines in Fig. 8). On the 

other hand, if one substitutes the energy differences according to Eq.(1) 

with 1,1,2/1 =+=ε= Ij , for 
1,1,2/1,,,,, =+=ε=ε≡

IjMFIjMF GG  the following values are 
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obtained: 545.12/1,2/1 =G , 762.12/1,2/3 =G , 703.02/3,2/3 =G  (note that the G  are 

positive for attractive states). The AC cd energies in second order are shown in Fig. 8 by 

dashed curves. In the medium interaction region, where the approach to the linear Stark 

effect is already noticeable, the full curves run more or less parallel to the dotted ones. 

The rather simple pattern of the AC potentials is the consequence of a vanishing 

coupling, in the electrical field of the ion, between different F-states belonging to the 

same parity.  

Fig. 9 shows the energies from regimes of the intermediate to the linear Stark 

effect. The potentials MF ,,ευ  here are shown on a logarithmic scale (full lines) in order 

to demonstrate the convergence to their cd counterpart when the HF coupling is 

neglected (dashed lines). The disappearance of the HF interaction with increasing η  in 

this figure is actually an artifact of the logarithmic representation, since part of the HF 

interaction survives as a first-order correction to the AC potentials cd
mV . Nonetheless, 

this disappearance supports the conclusion that the capture at large energies can be 

treated neglecting the small HF corrections to the interaction potential. Supplemented 

with the effective Langevin interaction, the AC potentials in Figures 8 and 9 provide the 

necessary information for calculating the accurate capture rate coefficients over a very 

wide temperature range with accounting both for the Λ-doubling and HF effects.  

Using the AC cd potentials, in the following we consider the low-temperature 

asymptotes of the partial rate coefficient L-cd
,

~~
MFχ  in the regime corresponding to second-

order Stark effect (we use L-cd
,

~~
MFχ  as a shortened notation for 

1,ε,2/1

Lcd
,,,ε,χ~~    

=+==

−

IjMFIj ). After 

some simple manipulations and with the use of the asymptotic rate coefficients, from 

Eq.(27) we obtain:  

 

αα=αα=χ ~243.1~~~
2/1,2/1

L-cd
2/1,2/1 G  

αα=αα=χ ~327.1~~~
2/1,2/3

L-cd
2/1,2/3 G       (29) 

αα=αα=χ ~838.0~~~
2/3,2/3

L-cd
2/3,2/3 G  
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The effective rate coefficient effL,-cd~~χ , for equal populations of two HF levels 2/3=F  

and 2/1=F , amounts to αα~136.1 , and it drops to αα~083.1  for the case of 

prevailing population of the lower HF state with 2/3=F . The value of the latter is 

marked by an arrow at the left hand side of Fig. 6.    

The extrapolation of the expressions in Eq.(29) to zero temperature requires a 

generalization of the AC approach in two respects: for ultra-low temperatures of the 

order of 22
B

4
ULT μα~qkT h=  and below, one has to take into account the quantum 

character of relative motion (quantization of the total angular momentum, tunneling 

through and reflection above centrifugal barriers)10 and the Coriolis coupling between 

AC states with different values of M, see Ref. 11 The latter is satisfactorily described by 

the axially nonadiabatic approach, which does not modify the AC result for 2/1=F  

with a single AC potential but merges the set of two AC potentials for 2/3=F  into a 

single average potential.11 In this way, the zero-temperature limit of the rate coefficients 
L-cd

2/1
~~χ  and L-cd

2/3
~~χ  for the states 2/1=F  and 2/3=F  respectively are given by the Vogt-

Wannier22 expressions:    

 

( ) αα~486.2αα~2χ
~~lim 2/1,2/10

Lcd
2/1 ==→
− GT  

           (30) 

( ) ( ) αα~220.22αα~2χ~~lim 2/3,2/32/1,2/30
Lcd

2/3 =+=→
− GGT  

 

The qualitative character of the temperature dependence of the rates within the range 
Λ<< 2/1ULT TTT  can be inferred by expressing ULTT  through the parameters of the 

problem under discussion. Substituting α~  from Eq.(26) into the expression for ULTT , we 

find 4
2/1,2/12/1

4
2/1,2/1B2/1ULT

~2~2 JTJkET ΛΛ =Δ≈ . Since 1~ >>J  (see Section 3), we see that 

the quantum regime in the capture occurs much below the characteristic temperature 
ΛT  corresponding to the Λ-doubling and, therefore, the plots of the functions )(

~~CD TFχ  

will exhibit a wide plateau within the range Λ<< 2/1ULT TTT  (as given by Eq.(29)), before 

they turn up, at ULTTT < , to their zero-temperature limits (as given by Eq.(30)).    
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6. Discussion and conclusion     

 The capture of NO in the lowest rotronic states ε,,2/1
2

jX Π , with 

1;2/5,2/3,2/1 ±=ε=j , by C+ demonstrates several general features of low-

temperature complex-formation in collisions of a dipolar molecule in a degenerate 

electronic state with an ion. The state-specific rate coefficients strongly depend on the 

Λ-doubling state even under conditions when the translational temperature T is much 

higher than the characteristic temperature Λ
jT  of the Λ-doubling splitting. This feature is 

a consequence of the very slow variation of the perturbation exerted on the molecule by 

the electric field of the ion upon mutual approach of the partner across a region 

corresponding to an intermediate Stark effect. With decreasing temperature, but for T 

still higher than Λ
jT , the capture occurs adiabatically with respect to transitions between 

adiabatic channel potentials correlating with different Λ-doubling components. Under 

this condition, the capture from the upper Λ-doubling component does not occur at all 

for 2/1=j  and 2/3=j , but it does occur for 2/5=j . The qualitative difference 

between these two cases is due to the subtle interplay between the charge-dipole 

interaction in the intermediate Stark effect and charge-quadrupole interaction. This 

difference demonstrates what happens when the projection of the permanent dipole 

moment onto the intrinsic angular momentum vector j, as a result of the rotational 

averaging of the dipole moment with increase of j, becomes small. The capture rate 

coefficient from the lower Λ-doubling component is quenched compared to its purely 

charge-permanent dipole (linear Stark effect) counterpart and, in the limit of very low 

temperature, at Λ<< jTT , the rate coefficient is determined by an interaction consisting 

of a Langevin-type term, formed by a second-order Stark effect component of the 

molecular dipole in the external field of the ion (proportional to 4−R ) and a charge-

quadrupole term (proportional to 3−R ). The inclusion of the hyperfine interaction 

neither drastically modifies the qualitative picture of the temperature dependence of the 

rate coefficients nor the nonadiabatic/adiabatic capture dynamics, since the electric field 

of the ion does not couple hyperfine structure states belonging to the same Λ-doubling 

component. For the same reason, the rate coefficients at ultra-low temperatures, when 

the relative motion of the partners shows quantum features, and their zero-temperature 

limits do not deviate drastically from the rate coefficients at very low temperatures. 
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However, the capture dynamics under the latter condition is complicated by the fact that 

the Coriolis coupling tends to average the first-order charge-quadrupole interaction 

proportional to 3−R  (effective for higher temperatures). As a result, the consequences of 

the charge-quadrupole interaction are second-order terms (with respect to the states of 

the relative rotation of the partners) being proportional to 4−R , see Ref. 12. Thus, the 

overall potential which is responsible for the capture in the ULT regime, behaves again 

like an effective Langevin interaction. On the whole, one can say that the apparent low-

temperature divergence of the capture rate coefficients of a dipolar and quadrupolar 

molecule in an open electronic state by an ion with decreasing temperature is removed 

by two effects: first, the 2/1−T  divergence from the cd interaction is removed by the 

nonadiabatic rotronic coupling between the given and other electronic states (which 

results in the Λ-doubling) and, second, the 6/1−T  divergence from the cq interaction is 

removed by the nonadiabatic rotational coupling which manifests itself in the averaging 

of the first-order cq interaction to zero. As a result, the state-specific Λ-doubling and HF 

capture rate coefficients tend to constant values at zero temperature which correspond to 

an effective Langevin interaction.  
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Appendix. Glossary of abbreviations used in this paper    

 

i)       AC = Adiabatic Channel, PR = Perturbed Rotor, cd =  charge-permanent dipole,  

L = Langevin, HF = hyperfine.  

ii) AC
,mjχ , AC

jχ  are reduced partial (j,m-specific) and total (j-specific) AC capture rate 

coefficients calculated with Λ-doubling effects ignored (i.e. corresponding to a sudden 

transition between the Λ-components). With AC replaced by PR, the rate coefficients 
PR

,mjχ , PR
jχ  corresponds to AC PR potentials. With AC replaced by cd, the rate 
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coefficients cd
,mjχ , cd

jχ  correspond to the cd interaction in a regime corresponding to a 

linear Stark effect. 

iii) mj ,
~χ , εχ ,

~
j  are reduced partial (j,m-specific) and total (j,ε-specific) capture rate 

coefficients  calculated accounting for nonadiabatic transitions between AC potentials. 

iv) surv/trans
,mjχ  are reduced auxiliary capture rate coefficients corresponding to survival 

on a mj,  AC potential and to transition between mjmj −→ ,,  AC potentials for the 

motion across the nonadiabaticity region. 

v) PR
,

~
mjχ , PR

,
~

εχ j  are reduced partial (j,m-specific) and total (j,ε-specific) AC PR 

capture rate coefficients calculated with Λ-doubling effect taken into account. With PR 

replaced by cd, the rate coefficients cd
,

~
mjχ , cd

,
~

εχ j  correspond to the cd interaction in the 

intermediate Stark effect regime. With PR replaced by cd-L, the rate coefficients L-cd
,

~
mjχ , 

L-cd
,

~
εχ j  correspond to the cd interaction in the quadratic Stark effect regime where the AC 

PR potentials are represented by effective Langevin-type (L) terms 

vi) 
1,ε,2/1

Lcd
,,,ε,

Lcd
, χ

~~    χ
~~

=+==

−− ≡
IjMFIjMF   are the reduced partial (F,M, j,ε -specific) AC cd 

capture rate coefficients calculated with Λ-doubling and hyperfine effects taken into 

account in the quadratic Stark effect regime with respect to the Λ-doubling hyperfine 

splitting.    
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Captions to Figures    

  

Fig. 1 Qualitative properties of AC potentials (labeled by m) for NO(X2Π1/2, j, ε) + ion 

with j=1/2, 3/2, 5/2 and ε=-1,1 in the range of the interaction energy BkU / =-0.5 π 0.5K 

relative to the mean energy of the Λ-doublet. Full lines stand for the accurate and PR 

potentials when they coincide. When they differ, the latter are represented by dashed 

lines. The Λ-doubling splitting, which increases linearly with j, is strongly enlarged for 

clarity. The numbers on top of the figure show the heights of the accurate potential 

barriers for initially repulsive AC potentials.  

 

Fig. 2. Nonadiabatic transition probabilities mjP ,  vs. collision energy E for mj,  and 

mj −,  AC states (labeled by mj,  pairs). The curves are terminated at values of about 
3

, 10−=mjP , below which mjP ,  can be calculated analytically. The arrows indicate the Λ-

doubling splitting in the free molecule for 2/5,2/3,2/1=j . The hatched inserts give 

the energy ranges where the capture changes from near-adiabatic to near-sudden. 

 

Fig. 3. Capture of NO( 1,2/1,2/1
2

±==Π εj ) by C+ at Λ>> 2/1TT . Full lines: accurate reduced 

rate coefficients +χ ,2/1
~ , −χ .2/1

~  and eff
2/1

~χ  (for thermal populations of the Λ-components). 

The dashed line corresponds to the rate coefficient AC
2/1

~χ  which is the mean of +χ ,2/1
~  and 

−χ .2/1
~ . The two filled symbols at the l.h.s. correspond to 0.1 K; values for lower T are 

shown in Figs.6 and 7. A slight decline of the curves at r.h.s. of the figure towards the 

Langevin limit (marked by the arrow) signals the breakdown of the PR approximation.  
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Fig. 4. Capture of NO( 1,2/3,2/1
2

±==Π εj ) by C+ at Λ>> 2/3TT . Full lines: accurate reduced 

rate coefficients, +χ ,2/3
~ , −χ ,2/3

~ , and eff
2/3

~χ  (for thermal populations of the Λ-components). 

The dashed line corresponds to the rate coefficient AC
2/3

~χ  which is the mean of +χ ,2/3
~  and 

−χ ,2/3
~ . The shallow minimum for +χ ,2/3

~ , eff
2/3

~χ  and sudd
2/3

~χ  results from the interplay of the 

charge-dipole and charge-quadrupole interaction. The two filled symbols at the l.h.s. of 

this figure correspond to 0.1 K; values for lower T are shown in Fig 7.  

 

Fig. 5. Capture of NO( 1,2/5,2/1
2

±==Π εj ) by C+ at Λ>> 2/5TT . Full lines: accurate reduced 

rate coefficients, +χ ,2/5
~ , −χ ,2/5

~ , and eff
2/5

~χ  (for thermal populations of the Λ-components). 

The dashed line corresponds to the rate coefficient AC
2/5

~χ  which is the mean of +χ ,2/5
~  and 

−χ ,2/5
~  The minimum for +χ ,2/5

~ , −χ ,2/5
~ , and sudd

2/5
~χ  results from the interplay of the 

charge-quadrupole and weak charge-dipole interaction. The filled symbols at the l.h.s. 

of this figure correspond to 0.1 K; values for lower T are shown in Fig 7.  

 

Fig. 6. Capture of NO( 1,2/1,2/1
2

+==Π εj ) by C+  in the region around Λ≈ 2/1TT  (marked by 

the arrow). The symbols correspond to the accurate PR rate coefficient PR
,2/1

~
+χ , the full 

line to effPR,
,2/1

~
+χ  and the dots to appPR,

,2/1
~

+χ . The dashed lines correspond to the extrapolations 

of PR
,2/1 +χ  and effPR,

2/1χ  from Λ>> 2/1TT  to lower temperatures. The two filled symbols at the 

r.h.s. of this figure correspond to those at the l.h.s. of Fig 3. The arrow at the l.h.s. of 

this figure corresponds to the low-temperature limit of the capture rate coefficients from 

the lowest HF state ( )2/3=F  of the lower component of the Λ-doublet, see Section 5.    
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Fig. 7. Capture of NO( 1,,2/1
2

±=Π εj ) by C+ in the region around Λ≈ jTT  (marked by the 

arrows) for .2/5,2/3,2/1=j  The open symbols correspond to the reduced rate 

coefficients PR
,

~
εχ j , and the full lines represent effPR,

,
~

εχ j . The filled symbols at the r.h.s. of 

this figure correspond to those at the l.h.s. of Figs 3–5.    

 

Fig. 8. Scaled  adiabatic channel potentials for 

NO( 2/3,2/1,1,2/1,2/1
2

=±==Π Fj ε ) + ion system (relative to the Λ-doubling spacing without 

HF interaction) vs. scaled cd interaction energies between free molecular states ( 0=η ) 

and medium-values of the cd interaction ( 6=η ). The full lines correspond to accurate 

potentials with 2/1±=M  (unmarked) and with 2/3±=M  (marked). The dashed lines 

correspond to second-order Stark effect with respect to HF where F and ε  are good 

quantum numbers. The dotted lines correspond to an intermediate Stark effect without 

HF interaction.  

 

Fig. 9. Scaled adiabatic channel potentials for the NO( ε,2/1,2/1
2

=Π j ) + ion system  vs. cd 

interaction energy from medium-values of the cd interaction ( 4=η ) to very large cd 

interaction ( 60=η ) (scaled as in Fig.8). The full lines correspond to accurate potentials 

(unmarked and marked for 2/1±=M  and 2/3±=M  respectively), the dotted lines to 

first-order Stark effect with respect to Λ-doubling states where m  and Ω~  become good 

quantum numbers. This figure overlaps with Fig. 8 over the range 64 <η< .  
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Table 1. Relevant parameters of the NO( 2/1
2ΠX ) molecule  

 

 effB     eD     ρ   
21K     d     

MHz    50124     0.016    355.2    46.3     112.6    

C m–1    1.67    71033.5 −⋅     0.0118    31054.1 −⋅     31075.3 −⋅     

Kelvin    2.41    71068.7 −⋅     0.0170    31022.2 −⋅     31040.5 −⋅     

 

cmesuDauμD ⋅⋅=== −191060.116.0063.0 ; a.u.11.337cmα =⋅= − 32410680.1 ; 

a.u.1.80cmesu 2 =⋅⋅−= −2610421.2Q     
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Figure 1
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Figure 2
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Figure 3
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Figure 4
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Figure 5
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Figure 6
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Figure 7
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Figure 8
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Figure 9
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