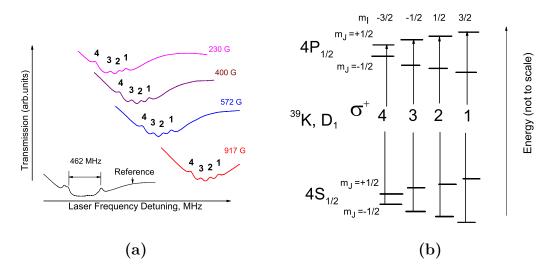
Study of atomic transitions of 39 K isotope on D_1 line in strong magnetic fields


A. Tonoyan^{1,2}, A. Sargsyan¹, G. Hakhumyan¹, <u>C. Leroy</u>², <u>Y. Pashayan-Leroy</u>², and D. Sarkisyan¹

¹Institute For Physical Research, National Academy of Sciences of Armenia, 0203 Ashtarak, Armenia ²Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR CNRS 6303, Université de Bourgogne, 21078 Dijon, France

Presenting Author: claude.leroy@u-bourgogne.fr & yevgenya.pashayan-leroy@u-bourgogne.fr

The magnetic field required to decouple the electronic total angular momentum J and the nuclear magnetic momentum I is given by $B \gg B_0 = A_{hfs}/\mu_B$, where A_{hfs} is the ground-state hyperfine coupling coefficient and μ_B is the Bohr magneton. For such strong magnetic fields when I and J are decoupled (Hyperfine Paschen Back (HPB) regime) the eigenstates of the Hamiltonian are described in the uncoupled basis of J and I projections $(m_J; m_I)$.

Among all the alkali metals, ³⁹K atom has the smallest value of the ground state hyperfine coupling coefficient: $A_{hfs}(^{39}\text{K}) = 231\hbar$ MHz. Consequently, the magnetic field required to decouple total electronic angular momentum J and nuclear spin momentum I (HPB regime) is $B \gg B_0(^{39}\text{K}) = 160$ G. Note that $B_0(^{85}\text{Rb}) \simeq 0.7$ kG and $B_0(^{87}\text{Rb}) \simeq 2.4$ kG. Thus, $B_0(^{39}\text{K})$ value is more than 4 times smaller than that for ⁸⁵Rb and 15 times smaller than that for ⁸⁷Rb. This means that complete HPB regime for ³⁹K can be observed for much smaller external magnetic fields [1]. It is demonstrated that the use of recently developed setup based on nano-cell filled with K metal (L = 770 nm) allows us to study behavior of atomic transition of ³⁹K atoms D_1 line in a wide range of magnetic fields.

Figure 1: (a) Transmission spectrum of ³⁹K vapor contained in the nano-cell with L = 770 nm for B = 230, 400, 572 and 917 G and σ^+ excitation. (b) The diagram of the hyperfine structure of the D_1 line of the ³⁹K HPB regime, the selection rules are $\Delta m_J = 1, \Delta m_I = 0$.

It is experimentally demonstrated that from 12 Zeeman transitions allowed at low *B*-field only 4 transitions remain in absorption spectra at B > 200 G (Fig. 1a). A complete HPB regime for relatively low magnetic fields $B \simeq 1.6$ kG has been observed. The theoretical model very well describes the experiment.

The research was conducted in the scope of the International Associated Laboratory IRMAS (CNRS-France & SCS-Armenia).

References

[1] A. Sargsyan, A. Tonoyan, G. Hakhumyan, etc., http://www.arxiv.org/abs/1502.07564v1