Radiative Lifetimes and Transition Probabilities in Rh I


1 Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, BG-1784 Sofia, Bulgaria
2 Department of Physics, Lund University, Box 118, 221 00 Lund, Sweden
3 Lund Observatory, Lund University, Box 43, 22100 Lund, Sweden
4 Applied Mathematics and Material Science, Malmö University, 20506 Malmö, Sweden
5 Astrophysique et Spectroscopie, Université de Mons, B-7000 Mons, Belgium
6 IPNAS, Université de Liège, B-4000 Liège, Belgium

Presenting Author: lars.engstrom@fysik.lth.se

Rhodium is one of the refractory elements observed in the solar photosphere and in meteorites [1]. To determine abundances the intrinsic transition probability (A-value) or oscillator strength (f-value) must be known for the observed lines. Radiative lifetimes of 17 high-lying excited states in Rh I are measured using the Time-Resolved, Laser-Induced Fluorescence (TR-LIF) method. Out of these lifetimes, 13 are new and the remaining four confirm previous TR-LIF measurements [2,3]. Furthermore, we report the first theoretical investigation of Rh I, where the radiative decay properties of all experimentally known levels below 47000 cm⁻¹ are calculated using a pseudo-relativistic Hartree-Fock method including core polarization effects. The theoretical calculations are found to be in very good agreement with the experimental results. A large set of new transition probabilities is presented for lines of astrophysical interest in the spectral range 2200 – 10000 Å.

This work has received funding from LASERLAB-EUROPE (grant agreement no. 284464, EC’s Seventh Framework Programme), the Swedish Research Council through the Linnaeus grant to the Lund Laser Centre and a project grant 621-2011-4206, and the Knut and Alice Wallenberg Foundation. P.P. and P.Q. are respectively Research Associate and Research Director of the Belgian National Fund for Scientific Research F.R.S.-FNRS from which financial support is gratefully acknowledged.

References